Object tracking method based on joint global and local feature descriptor of 3D LIDAR point cloud

被引:7
|
作者
Qian, Qishu [1 ,2 ]
Hu, Yihua [1 ,2 ]
Zhao, Nanxiang [1 ,2 ]
Li, Minle [1 ,2 ]
Shao, Fucai [3 ]
Zhang, Xinyuan [1 ,2 ]
机构
[1] Natl Univ Def Technol, State Key Lab Pulsed Power Laser Technol, Hefei 230037, Peoples R China
[2] Natl Univ Def Technol, Anhui Prov Key Lab Elect Restrict, Hefei 230037, Peoples R China
[3] Cent Mil Commiss Beijing, Mil Representat Bur, Minist Equipment Dev, Beijing 100191, Peoples R China
基金
中国国家自然科学基金;
关键词
object tracking; LIDAR; global and local feature descriptor; point cloud; PARTICLE FILTER; POSE;
D O I
10.3788/COL202018.061001
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
To fully describe the structure information of the point cloud when the LIDAR-object distance is long, a joint global and local feature (JGLF) descriptor is constructed. Compared with five typical descriptors, the object recognition rate of JGLF is higher when the LIDAR-object distances change. Under the situation that airborne LIDAR is getting close to the object, the particle filtering (PF) algorithm is used as the tracking frame. Particle weight is updated by comparing the difference between JGLFs to track the object. It is verified that the proposed algorithm performs 13.95% more accurately and stably than the basic PF algorithm.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Novel 3D local feature descriptor of point clouds based on spatial voxel homogenization for feature matching
    Jiong Yang
    Jian Zhang
    Zhengyang Cai
    Dongyang Fang
    Visual Computing for Industry, Biomedicine, and Art, 6
  • [32] Transferable Adversarial Attack on 3D Object Tracking in Point Cloud
    Liu, Xiaoqiong
    Lin, Yuewei
    Yang, Qing
    Fan, Heng
    MULTIMEDIA MODELING, MMM 2023, PT II, 2023, 13834 : 446 - 458
  • [33] PTTR: Relational 3D Point Cloud Object Tracking with Transformer
    Zhou, Changqing
    Luo, Zhipeng
    Luo, Yueru
    Liu, Tianrui
    Pan, Liang
    Cai, Zhongang
    Zhao, Haiyu
    Lu, Shijian
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 8521 - 8530
  • [34] Modeling Continuous Motion for 3D Point Cloud Object Tracking
    Luo, Zhipeng
    Zhang, Gongjie
    Zhou, Changqing
    Wu, Zhonghua
    Tao, Qingyi
    Lu, Lewei
    Lu, Shijian
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 5, 2024, : 4026 - 4034
  • [35] Structure aware 3D single object tracking of point cloud
    Zhou, Xiaoyu
    Wang, Ling
    Yuan, Zhian
    Xu, Ke
    Ma, Yanxin
    JOURNAL OF ELECTRONIC IMAGING, 2021, 30 (04)
  • [36] Boosting Lidar 3D Object Detection with Point Cloud Semantic Segmentation
    Zhang, Xuchong
    Min, Chong
    Jia, Yijie
    Chen, Liming
    Zhang, Jingmin
    Sun, Hongbin
    2023 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2023, : 7614 - 7621
  • [37] Monocular 3D Object Detection with Pseudo-LiDAR Point Cloud
    Weng, Xinshuo
    Kitani, Kris
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, : 857 - 866
  • [38] 3D Object Recognition Method Based on Point Cloud Sequential Coding
    Dong, Shuai
    Ren, Li
    Zou, Kun
    Li, Wensheng
    ICMLC 2020: 2020 12TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND COMPUTING, 2018, : 297 - 300
  • [39] JOINT OPTIMIZED POINT CLOUD COMPRESSION FOR 3D OBJECT DETECTION
    Liu, Bojun
    Li, Shanshan
    Sheng, Xihua
    Li, Li
    Liu, Dong
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 1185 - 1189
  • [40] Point cloud 3D object detection algorithm based on local information fusion
    Zhang, Linjie
    Chai, Zhilei
    Wang, Ning
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2024, 58 (11): : 2219 - 2229