Object tracking method based on joint global and local feature descriptor of 3D LIDAR point cloud

被引:6
|
作者
Qian, Qishu [1 ,2 ]
Hu, Yihua [1 ,2 ]
Zhao, Nanxiang [1 ,2 ]
Li, Minle [1 ,2 ]
Shao, Fucai [3 ]
Zhang, Xinyuan [1 ,2 ]
机构
[1] Natl Univ Def Technol, State Key Lab Pulsed Power Laser Technol, Hefei 230037, Peoples R China
[2] Natl Univ Def Technol, Anhui Prov Key Lab Elect Restrict, Hefei 230037, Peoples R China
[3] Cent Mil Commiss Beijing, Mil Representat Bur, Minist Equipment Dev, Beijing 100191, Peoples R China
基金
中国国家自然科学基金;
关键词
object tracking; LIDAR; global and local feature descriptor; point cloud; PARTICLE FILTER; POSE;
D O I
10.3788/COL202018.061001
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
To fully describe the structure information of the point cloud when the LIDAR-object distance is long, a joint global and local feature (JGLF) descriptor is constructed. Compared with five typical descriptors, the object recognition rate of JGLF is higher when the LIDAR-object distances change. Under the situation that airborne LIDAR is getting close to the object, the particle filtering (PF) algorithm is used as the tracking frame. Particle weight is updated by comparing the difference between JGLFs to track the object. It is verified that the proposed algorithm performs 13.95% more accurately and stably than the basic PF algorithm.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Object tracking method based on joint global and local feature descriptor of 3D LIDAR point cloud
    Qian, Qishu
    Hu, Yihua
    Zhao, Nanxiang
    Li, Minle
    Shao, Fucai
    Zhang, Xinyuan
    Chinese Optics Letters, 2020, 18 (06):
  • [2] Object tracking method based on joint global and local feature descriptor of 3D LIDAR point cloud
    钱其姝
    胡以华
    赵楠翔
    李敏乐
    邵福才
    张鑫源
    Chinese Optics Letters, 2020, 18 (06) : 28 - 33
  • [3] A 3D Point Cloud Feature Identification Method Based on Improved Point Feature Histogram Descriptor
    Wang, Chunxiao
    Xiong, Xiaoqing
    Zhang, Xiaoying
    Liu, Lu
    Tan, Wu
    Liu, Xiaojuan
    Yang, Houqun
    ELECTRONICS, 2023, 12 (17)
  • [4] Learning a Local Feature Descriptor for 3D LiDAR Scans
    Dewan, Ayush
    Caselitz, Tim
    Burgard, Wolfram
    2018 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2018, : 4774 - 4780
  • [5] 3D point cloud denoising method based on global feature guidance
    Yang, Wenming
    He, Zhouyan
    Song, Yang
    Ma, Yeling
    VISUAL COMPUTER, 2024, 40 (09): : 6137 - 6153
  • [6] Point cloud 3D object detection method based on density information-local feature fusion
    Yanjie Chen
    Feng Xu
    Guodong Chen
    Zhiqiang Liang
    Jin Li
    Multimedia Tools and Applications, 2024, 83 : 2407 - 2425
  • [7] Point cloud 3D object detection method based on density information-local feature fusion
    Chen, Yanjie
    Xu, Feng
    Chen, Guodong
    Liang, Zhiqiang
    Li, Jin
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (1) : 2407 - 2425
  • [8] Fusion 3D object tracking method based on region and point cloud registration
    Jin, Yixin
    Zhang, Jiawei
    Liu, Yinhua
    Mo, Wei
    Chen, Hua
    Journal of Electronic Imaging, 2024, 33 (04)
  • [9] 3D Object Detection Based on Feature Distribution Convergence Guided by LiDar Point Cloud and Semantic Association
    Zheng J.
    Jiang B.-T.
    Peng W.
    Wang S.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2024, 52 (05): : 1700 - 1715
  • [10] Multimodal 3D Object Detection Method Based on Pseudo Point Cloud Feature Enhancement
    Kong D.-M.
    Li X.-W.
    Yang Q.-X.
    Jisuanji Xuebao/Chinese Journal of Computers, 2024, 47 (04): : 759 - 775