ACCELERATING BRAIN RESEARCH USING EXPLAINABLE ARTIFICIAL INTELLIGENCE

被引:0
|
作者
Chou, Jing-Lun [1 ]
Huang, Ya-Lin [1 ]
Hsieh, Chia-Ying [1 ]
Huang, Jian-Xue [1 ]
Wei, Chun-Shu [1 ]
机构
[1] Natl Yang Ming Chiao Tung Univ, Hsinchu, Taiwan
关键词
Brain-computer interface (BCI); electroencephalography (EEG); feature visualization; convolutional neural network (CNN);
D O I
10.1109/ICMEW56448.2022.9859322
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this demo, we present ExBrainable, an open-source application dedicated to modeling, evaluating and visualizing explainable CNN-based models on EEG data for brain/neuroscience research. We have implemented the functions including EEG data loading, model training, evaluation and parameter visualization. The application is also built with a model base including representative convolutional neural network architectures for users to implement without any programming. With its easy-to-use graphic user interface (GUI), it is completely available for investigators of different disciplines with limited resource and limited programming skill. Starting with preprocessed EEG data, users can quickly train the desired model, evaluate the performance, and finally visualize features learned by the model with no pain.
引用
收藏
页数:1
相关论文
共 50 条
  • [21] Review of Explainable Artificial Intelligence
    Zhao, Yanyu
    Zhao, Xiaoyong
    Wang, Lei
    Wang, Ningning
    Computer Engineering and Applications, 2023, 59 (14) : 1 - 14
  • [22] Explainable artificial intelligence in ophthalmology
    Tan, Ting Fang
    Dai, Peilun
    Zhang, Xiaoman
    Jin, Liyuan
    Poh, Stanley
    Hong, Dylan
    Lim, Joshua
    Lim, Gilbert
    Teo, Zhen Ling
    Liu, Nan
    Ting, Daniel Shu Wei
    CURRENT OPINION IN OPHTHALMOLOGY, 2023, 34 (05) : 422 - 430
  • [23] A Review of Explainable Artificial Intelligence
    Lin, Kuo-Yi
    Liu, Yuguang
    Li, Li
    Dou, Runliang
    ADVANCES IN PRODUCTION MANAGEMENT SYSTEMS: ARTIFICIAL INTELLIGENCE FOR SUSTAINABLE AND RESILIENT PRODUCTION SYSTEMS, APMS 2021, PT IV, 2021, 633 : 574 - 584
  • [24] Explainable Artificial Intelligence for Cybersecurity
    Sharma, Deepak Kumar
    Mishra, Jahanavi
    Singh, Aeshit
    Govil, Raghav
    Srivastava, Gautam
    Lin, Jerry Chun-Wei
    COMPUTERS & ELECTRICAL ENGINEERING, 2022, 103
  • [25] Explainable Artificial Intelligence: A Survey
    Dosilovic, Filip Karlo
    Brcic, Mario
    Hlupic, Nikica
    2018 41ST INTERNATIONAL CONVENTION ON INFORMATION AND COMMUNICATION TECHNOLOGY, ELECTRONICS AND MICROELECTRONICS (MIPRO), 2018, : 210 - 215
  • [26] Unraveling motor imagery brain patterns using explainable artificial intelligence based on Shapley values
    Perez-Velasco, Sergio
    Marcos-Martinez, Diego
    Santamaria-Vazquez, Eduardo
    Martinez-Cagigal, Victor
    Moreno-Calderon, Selene
    Hornero, Roberto
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2024, 246
  • [27] Constructing personalized characterizations of structural brain aberrations in patients with dementia using explainable artificial intelligence
    Leonardsen, Esten H.
    Persson, Karin
    Grodem, Edvard
    Dinsdale, Nicola
    Schellhorn, Till
    Roe, James M.
    Vidal-Pineiro, Didac
    Sorensen, Oystein
    Kaufmann, Tobias
    Westman, Eric
    Marquand, Andre
    Selbaek, Geir
    Andreassen, Ole A.
    Wolfers, Thomas
    Westlye, Lars T.
    Wang, Yunpeng
    NPJ DIGITAL MEDICINE, 2024, 7 (01):
  • [28] Taming the chaos?! Using eXplainable Artificial Intelligence (XAI) to tackle the complexity in mental health research
    Veit Roessner
    Josefine Rothe
    Gregor Kohls
    Georg Schomerus
    Stefan Ehrlich
    Christian Beste
    European Child & Adolescent Psychiatry, 2021, 30 : 1143 - 1146
  • [29] Taming the chaos?! Using eXplainable Artificial Intelligence (XAI) to tackle the complexity in mental health research
    Roessner, Veit
    Rothe, Josefine
    Kohls, Gregor
    Schomerus, Georg
    Ehrlich, Stefan
    Beste, Christian
    EUROPEAN CHILD & ADOLESCENT PSYCHIATRY, 2021, 30 (08) : 1143 - 1146
  • [30] Accelerating the pace of ecotoxicological assessment using artificial intelligence
    Song, Runsheng
    Li, Dingsheng
    Chang, Alexander
    Tao, Mengya
    Qin, Yuwei
    Keller, Arturo A.
    Suh, Sangwon
    AMBIO, 2022, 51 (03) : 598 - 610