Visualizing principal components analysis for multivariate process data

被引:3
|
作者
Bisgaard, Soren [1 ,2 ]
Huang, Xuan [1 ]
机构
[1] Univ Massachusetts, Amherst, MA 01002 USA
[2] Univ Amsterdam, NL-1012 WX Amsterdam, Netherlands
关键词
cointegration; data mining; econometrics; multivariate analysis; statistical graphics; statistical process control;
D O I
10.1080/00224065.2008.11917735
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this article, we suggest a simple method for visualizing the results of principal components analysis (PCA) intended to complement existing graphical methods for multivariate time series data applicable for process analysis and control. The idea is to visualize multivariate data as a surface that in turn can be decomposed with PCA. The surface plots developed in this paper are intended for statistical process analysis but may also help visualize economic data and, in particular, cointegration.
引用
收藏
页码:299 / 309
页数:11
相关论文
共 50 条
  • [21] MULTIVARIATE ALLOMETRY AND REMOVAL OF SIZE WITH PRINCIPAL COMPONENTS-ANALYSIS
    SOMERS, KM
    SYSTEMATIC ZOOLOGY, 1986, 35 (03): : 359 - 368
  • [22] METHOD OF PRINCIPAL COMPONENTS IN MULTIVARIATE STATISTICAL-ANALYSIS (REVIEW)
    ERMAKOV, SM
    POKHODZEI, BB
    SOLNTSEV, VN
    INDUSTRIAL LABORATORY, 1983, 49 (05): : 498 - 508
  • [23] MULTIVARIATE DATA REDUCTION BY PRINCIPAL COMPONENTS, WITH APPLICATION TO NEUROLOGICAL SCORING INSTRUMENTS
    KOZIOL, JA
    HACKE, W
    JOURNAL OF NEUROLOGY, 1990, 237 (08) : 461 - 464
  • [25] The Analysis of Multivariate Group Differences Using Common Principal Components
    Bechger, Timo M.
    Blanca, Maria J.
    Maris, Gunter
    STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2014, 21 (04) : 577 - 587
  • [26] PRINCIPAL COMPONENTS IN MULTIVARIATE CONTROL CHARTS APPLIED TO DATA INSTRUMENTATION OF DAMS
    Lazzarotto, Emerson
    Gramani, Liliana Madalena
    Neto, Anselmo Chaves
    Teixeira Junior, Luiz Albino
    INDEPENDENT JOURNAL OF MANAGEMENT & PRODUCTION, 2016, 7 (01): : 17 - 37
  • [27] The multivariate split normal distribution and asymmetric principal components analysis
    Villani, M
    Larsson, R
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2006, 35 (06) : 1123 - 1140
  • [28] Supervised principal components: a new method for multivariate spectral analysis
    Bin, Jun
    Ai, Fang-Fang
    Liu, Nian
    Zhang, Zhi-Min
    Liang, Yi-Zeng
    Shu, Ru-Xin
    Yang, Kai
    JOURNAL OF CHEMOMETRICS, 2013, 27 (12) : 457 - 465
  • [29] On the estimation of the number of components in multivariate functional principal component analysis
    Golovkine, Steven
    Gunning, Edward
    Simpkin, Andrew J.
    Bargary, Norma
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2025,
  • [30] Multivariate Process Capability Using Principal Component Analysis
    Shinde, R. L.
    Khadse, K. G.
    QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2009, 25 (01) : 69 - 77