APPLICATIONS OF A RELATIVE VARIATIONAL PRINCIPLE TO DIMENSIONS OF NONCONFORMAL EXPANDING MAPS

被引:6
|
作者
Yayama, Yuki [1 ]
机构
[1] Univ Chile, Ctr Modelamiento Matemat, Santiago, Chile
关键词
Relative pressure; relative variational principle; subadditive potential; symbolic dynamical systems; Hausdorff dimension; nonconformal expanding map; THERMODYNAMIC FORMALISM; EQUILIBRIUM STATES; PRESSURE;
D O I
10.1142/S0219493711003486
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Zhao and Cao (2008) showed the relative variational principle for subadditive potentials in random dynamical systems. Applying their result, we find the Hausdorff dimension of an n (>= 3)-dimensional general Sierpinski carpet which has an irreducible sofic shift in symbolic representation and study an invariant ergodic measure of full Hausdorff dimension. These generalize the results of Kenyon and Peres (1996) on the Hausdorff dimension of an n-dimensional general Sierpinski carpet represented by a full shift.
引用
收藏
页码:643 / 679
页数:37
相关论文
共 50 条
  • [21] EXTENSION AND APPLICATIONS OF THE EKELAND VARIATIONAL PRINCIPLE
    TAMMER, C
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1993, 73 (7-8): : T823 - T826
  • [22] A One Perturbation Variational Principle and Applications
    Jonathan Borwein
    Lixin Cheng
    Marián Fabian
    Julian P. Revalski
    [J]. Set-Valued Analysis, 2004, 12 : 49 - 60
  • [23] Fuzzy variational principle and its applications
    Yang, LF
    Li, QS
    Leung, AYT
    Zhao, YL
    Li, GQ
    [J]. EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2002, 21 (06) : 999 - 1018
  • [24] A variational principle of amenable random metric mean dimensions
    Tang, Dingxuan
    Li, Zhiming
    [J]. PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2024,
  • [25] Duality with expanding maps and shrinking maps, and its applications to Gauss maps
    Katsuhisa Furukawa
    [J]. Mathematische Annalen, 2014, 358 : 403 - 432
  • [26] Duality with expanding maps and shrinking maps, and its applications to Gauss maps
    Furukawa, Katsuhisa
    [J]. MATHEMATISCHE ANNALEN, 2014, 358 (1-2) : 403 - 432
  • [27] EKELAND TYPE VARIATIONAL PRINCIPLE FOR SET-VALUED MAPS IN QUASI-METRIC SPACES WITH APPLICATIONS
    Ansari, Qamrul Hasan
    Sharma, Pradeep Kumar
    [J]. JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2019, 20 (08) : 1683 - 1700
  • [28] EKELAND'S VARIATIONAL PRINCIPLE FOR SET-VALUED MAPS WITH APPLICATIONS TO VECTOR OPTIMIZATION IN UNIFORM SPACES
    Ansari, Qamrul Hasan
    Eshghinezhad, Somayeh
    Fakhar, Majid
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2014, 18 (06): : 1999 - 2020
  • [29] The almost sure invariance principle for unbounded functions of expanding maps
    Dedecker, J.
    Gouezel, S.
    Merlevede, F.
    [J]. ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2012, 9 : 141 - 163
  • [30] Almost sure invariance principle for random piecewise expanding maps
    Dragicevic, Davor
    Froyland, G.
    Gonzalez-Tokman, C.
    Vaienti, S.
    [J]. NONLINEARITY, 2018, 31 (05) : 2252 - 2280