BOUNDEDNESS IN QUASILINEAR KELLER-SEGEL EQUATIONS WITH NONLINEAR SENSITIVITY AND LOGISTIC SOURCE

被引:56
|
作者
Li, Xie [1 ,2 ]
Xiang, Zhaoyin [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Peoples R China
[2] China West Normal Univ, Coll Mathemat & Informat, Nanchong 637002, Peoples R China
关键词
Global existence; boundedness; parabolic-elliptic Keller-Segel system; parabolic-parabolic Keller-Segel systems; TIME BLOW-UP; CHEMOTAXIS SYSTEM; GLOBAL EXISTENCE; SINGULARITY FORMATION; MODEL; PREVENTION;
D O I
10.3934/dcds.2015.35.3503
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the quasilinear Keller-Segel equations (q-K-S): {nt = del. (D(n)Vn) - del. (x(n)del c) + R(n), x is an element of Omega, t > 0, rho ct = Delta c - c + n, x is an element of Omega, t > 0, under homogeneous Neumann boundary conditions in a bounded domain Omega subset of R-N. For both rho = 0 (parabolic-elliptic case) and rho > 0 (parabolic-parabolic case), we will show the global-in-time existence and uniform-in-time boundedness of solutions to equations (q-K-S) with both non-degenerate and degenerate diffusions on the non-convex domain Omega, which provide a supplement to the dichotomy boundedness vs. blow-up in parabolic-elliptic/parabolic-parabolic chemotaxis equations with degenerate diffusion, nonlinear sensitivity and logistic source. In particular, we improve the recent results obtained by Wang-LiMu (2014, Disc. Cont. Dyn. Syst.) and Wang-Mu-Zheng (2014, J. Differential Equations).
引用
收藏
页码:3503 / 3531
页数:29
相关论文
共 50 条
  • [21] Spatial pattern formation in the Keller-Segel Model with a logistic source
    Fu, Shengmao
    Liu, Ji
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 66 (03) : 403 - 417
  • [22] Global Boundedness in a Logarithmic Keller-Segel System
    Liu, Jinyang
    Tian, Boping
    Wang, Deqi
    Tang, Jiaxin
    Wu, Yujin
    MATHEMATICS, 2023, 11 (12)
  • [23] BOUNDEDNESS IN A QUASILINEAR FULLY PARABOLIC KELLER-SEGEL SYSTEM VIA MAXIMAL SOBOLEV REGULARITY
    Ishida, Sachiko
    Yokota, Tomomi
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2020, 13 (02): : 211 - 232
  • [24] A new result for global existence and boundedness of solutions to a parabolic-parabolic Keller-Segel system with logistic source
    Zheng, Jiashan
    Li, YanYan
    Bao, Gui
    Zou, Xinhua
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 462 (01) : 1 - 25
  • [25] New results on traveling waves for the Keller-Segel model with logistic source
    Wang, Yahui
    Ou, Chunhua
    APPLIED MATHEMATICS LETTERS, 2023, 145
  • [26] On the Fractional View Analysis of Keller-Segel Equations with Sensitivity Functions
    Liu, Haobin
    Khan, Hassan
    Shah, Rasool
    Alderremy, A. A.
    Aly, Shaban
    Baleanu, Dumitru
    COMPLEXITY, 2020, 2020 (2020)
  • [27] Traveling wave solutions of a singular Keller-Segel system with logistic source
    Li, Tong
    Wang, Zhi-An
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2022, 19 (08) : 8107 - 8131
  • [28] Critical mass for Keller-Segel systems with supercritical nonlinear sensitivity
    Mao, Xuan
    Li, Yuxiang
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2023, 33 (11): : 2395 - 2423
  • [29] EXISTENCE AND BOUNDEDNESS OF SOLUTIONS FOR A KELLER-SEGEL SYSTEM WITH GRADIENT DEPENDENT CHEMOTACTIC SENSITIVITY
    Yan, Jianlu
    Li, Yuxiang
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2020,
  • [30] Boundedness in a nonlinear attraction-repulsion Keller-Segel system with production and consumption
    Frassu, Silvia
    van der Mee, Cornelis
    Viglialoro, Giuseppe
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 504 (02)