Suspended InAs Nanowire-Based Devices for Thermal Conductivity Measurement Using the 3 Method

被引:24
|
作者
Rocci, Mirko [1 ,2 ]
Demontis, Valeria [1 ,2 ]
Prete, Domenic [1 ,2 ]
Ercolani, Daniele [1 ,2 ]
Sorba, Lucia [1 ,2 ]
Beltram, Fabio [1 ,2 ]
Pennelli, Giovanni [3 ]
Roddaro, Stefano [4 ]
Rossella, Francesco [1 ,2 ]
机构
[1] Scuola Normale Super Pisa, NEST, Piazza S Silvestro 12, I-56127 Pisa, Italy
[2] CNR, Ist Nanosci, Piazza S Silvestro 12, I-56127 Pisa, Italy
[3] Univ Pisa, Dipartimento Ingn Informaz, Via Caruso 16, I-56122 Pisa, Italy
[4] Univ Pisa, Dipartimento Fis, Largo Bruno Pontecorvo 3, I-56127 Pisa, Italy
关键词
3; method; InAs; nanowire; suspended nanostructure; thermoelectric; THERMOELECTRICS; ENHANCEMENT; INSB; PERFORMANCE; EFFICIENCY; GIANT;
D O I
10.1007/s11665-018-3715-x
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We demonstrated device architectures implementing suspended InAs nanowires for thermal conductivity measurements. To this aim, we exploited a fabrication protocol involving the use of a sacrificial layer. The relatively large aspect ratio of our nanostructures combined with their low electrical resistance allows to exploit the four-probe 3 technique to measure the thermal conductivity, inducing electrical self-heating in the nanowire at frequency and measuring the voltage drop across the nanostructure at frequency 3. In our systems, field effect modulation of the transport properties can be achieved exploiting fabricated side-gate electrodes in combination with the SiO2/Si++substrate acting as a back gate. Our device architectures can open new routes to the all-electrical investigation of thermal parameters in III-V semiconductor nanowires, with a potential impact on thermoelectric applications.
引用
收藏
页码:6299 / 6305
页数:7
相关论文
共 50 条
  • [21] Measurement of Thermal Conductivity of Carbon Fibers Using Wire-Based 3ω Method
    Liang, J.
    Saha, M. C.
    Altan, M. C.
    PROCEEDINGS OF THE AMERICAN SOCIETY FOR COMPOSITES, 2013,
  • [22] Machining gold nanowire-based nanoelectrode array by using nanoskiving method
    Yan, Yongda
    Fang, Zhuo
    Geng, Yanquan
    Zhang, Guoxiong
    CIRP ANNALS-MANUFACTURING TECHNOLOGY, 2023, 72 (01) : 57 - 60
  • [23] Silicon Nanowire-Based Devices for Gas-Phase Sensing
    Cao, Anping
    Sudholter, Ernst J. R.
    de Smet, Louis C. P. M.
    SENSORS, 2014, 14 (01): : 245 - 271
  • [24] Si Nanowire-Based Photovoltaic Devices Prepared at Various Temperatures
    Hsueh, Ting-Jen
    Chen, Hsin-Yuan
    Tsai, Tsung-Ying
    Weng, Wen-Yin
    Yeh, Yu-Ming
    Dai, Bau-Tong
    Shieh, Jia-Min
    IEEE ELECTRON DEVICE LETTERS, 2010, 31 (11) : 1275 - 1277
  • [25] Spin-dependent transport in GaAs nanowire-based devices
    Deng, Lidong
    Zhang, Chenhui
    Xiang, Gang
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2017, 441 : 678 - 682
  • [26] Gas thermal conductivity measurement using a 3ω based sensor
    Gauthier, Sebastian
    Giani, Alain
    Combette, Philippe
    2012 SYMPOSIUM ON DESIGN, TEST, INTEGRATION AND PACKAGING OF MEMS/MOEMS (DTIP), 2012, : 160 - 163
  • [27] Thermal Conductivity of GaAs Nanowire Arrays Measured by the 3ω Method
    Ghukasyan, Ara
    Oliveira, Pedro
    Goktas, Nebile Isik
    LaPierre, Ray
    NANOMATERIALS, 2022, 12 (08)
  • [28] Nanowire-based plasmonic waveguides and devices for integrated nanophotonic circuits
    Wei, Hong
    Xu, Hongxing
    NANOPHOTONICS, 2012, 1 (02) : 155 - 169
  • [29] Nanowire-based resistive switching memories: devices, operation and scaling
    Ielmini, D.
    Cagli, C.
    Nardi, F.
    Zhang, Y.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2013, 46 (07)
  • [30] A comparison between Si and GaAs nanowire-based photovoltaic devices
    Abdellatif, S.
    Kirah, K.
    Ghali, H.
    Anis, W.
    SMART NANO-MICRO MATERIALS AND DEVICES, 2011, 8204