ShorelineNet: An Efficient Deep Learning Approach for Shoreline Semantic Segmentation for Unmanned Surface Vehicles

被引:22
|
作者
Yao, Linghong [1 ]
Kanoulas, Dimitrios [2 ]
Ji, Ze [3 ]
Liu, Yuanchang [1 ]
机构
[1] Univ Coll London UCL, Dept Mech Engn, London WC1E 7JE, England
[2] Univ Coll London UCL, Dept Comp Sci, London WC1E 6BT, England
[3] Cardiff Univ, Sch Engn, Cardiff, Wales
关键词
MULTITASK ALLOCATION;
D O I
10.1109/IROS51168.2021.9636614
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper introduces a novel deep learning approach to semantic segmentation of the shoreline environments with a high frames-per-second (fps) performance, making the approach readily applicable to autonomous navigation for Unmanned Surface Vehicles (USV). The proposed ShorelineNet is an efficient deep neural network of high performance relying only on visual input. ShorelineNet uses monocular visual input to produce accurate shoreline separation and obstacle detection compared to the state-of-the-art, and achieves this with realtime performance. Experimental validation on a challenging multi-modal maritime obstacle detection dataset, the MODD2 dataset, achieves a much faster inference (25fps on an NVIDIA Tesla K80 and 6fps on a CPU) with respect to the recent state-of-the-art methods, while keeping the performance equally high (73.1% F-score). This makes ShorelineNet a robust and effective model to be used for reliable USV navigation that require realtime and high-performance semantic segmentation of maritime environments.
引用
收藏
页码:5403 / 5409
页数:7
相关论文
共 50 条
  • [41] A voxel-based deep learning approach for Point Cloud Semantic Segmentation
    Diaz-Medina, Miguel
    Fuertes-Garcia, Jose-Manuel
    Ogayar-Anguita, Carlos-Javier
    Lucena, Manuel
    XXIX SPANISH COMPUTER GRAPHICS CONFERENCE (CEIG19), 2019, : 73 - 76
  • [42] DEEP LEARNING FOR SEMANTIC SEGMENTATION OF UAV VIDEOS
    Wang, Yiwen
    Lyn, Ye
    Cao, Yanpeng
    Yang, Michael Ying
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 2459 - 2462
  • [43] Deep Dual Learning for Semantic Image Segmentation
    Luo, Ping
    Wang, Guangrun
    Lin, Liang
    Wang, Xiaogang
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, : 2737 - 2745
  • [44] SEMANTIC SEGMENTATION OF TEXT USING DEEP LEARNING
    Lattisi, Tiziano
    Farina, Davide
    Ronchetti, Marco
    COMPUTING AND INFORMATICS, 2022, 41 (01) : 78 - 97
  • [45] A Brief Survey on Semantic Segmentation with Deep Learning
    Hao, Shijie
    Zhou, Yuan
    Guo, Yanrong
    NEUROCOMPUTING, 2020, 406 : 302 - 321
  • [46] Deep Learning for Semantic Segmentation on Minimal Hardware
    van Dijk, Sander G.
    Scheunemann, Marcus M.
    ROBOT WORLD CUP XXII, ROBOCUP 2018, 2019, 11374 : 349 - 361
  • [47] Orchard Mapping with Deep Learning Semantic Segmentation
    Anagnostis, Athanasios
    Tagarakis, Aristotelis C.
    Kateris, Dimitrios
    Moysiadis, Vasileios
    Sorensen, Claus Gron
    Pearson, Simon
    Bochtis, Dionysis
    SENSORS, 2021, 21 (11)
  • [48] Image Classification and Semantic Segmentation with Deep Learning
    Quazi, Saiman
    Musa, Sarhan M.
    6TH IEEE INTERNATIONAL CONFERENCE ON RECENT ADVANCES AND INNOVATIONS IN ENGINEERING (ICRAIE), 2021,
  • [49] Efficient 3D Deep Learning Model for Medical Image Semantic Segmentation
    Alalwan, Nasser
    Abozeid, Amr
    ElHabshy, AbdAllah A.
    Alzahrani, Ahmed
    ALEXANDRIA ENGINEERING JOURNAL, 2021, 60 (01) : 1231 - 1239
  • [50] Contrastive Learning for Label Efficient Semantic Segmentation
    Zhao, Xiangyun
    Vemulapalli, Raviteja
    Mansfield, Philip Andrew
    Gong, Boqing
    Green, Bradley
    Shapira, Lior
    Wu, Ying
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 10603 - 10613