Learning emotion recognition from canines? Two for the road

被引:9
|
作者
Stetina, Birgit U. [1 ]
Turner, Karoline
Burger, Eva
Glenk, Lisa M. [2 ]
McElheney, Julia C.
Handlos, Ursula [3 ]
Kothgassner, Oswald D. [1 ]
机构
[1] Univ Vienna, Dept Clin Biol & Differential Psychol, A-1010 Vienna, Austria
[2] Vet Univ Vienna, Dept Neurophysiol, A-1030 Vienna, Austria
[3] Vienna Sch City Board, Vienna, Austria
关键词
emotion recognition; animal-assisted therapy; animal-assisted intervention; basic emotions; emotional enhancement; dogs; DOG; COMMUNICATION; COMPREHENSION; FAMILIARIS; PATTERNS; INSIGHTS; LUPUS;
D O I
10.1016/j.jveb.2010.11.004
中图分类号
B84 [心理学]; C [社会科学总论]; Q98 [人类学];
学科分类号
03 ; 0303 ; 030303 ; 04 ; 0402 ;
摘要
The ability to recognize emotions is a prerequisite for interpersonal interaction and essential for emotional competencies. The present study aimed at exploring the possibility of enhancing the emotion recognition capability of human beings by using an animal-assisted intervention focusing on emotional expressions of dogs. A pre-post design was applied to 32 children aged 5-7 years and 34 adults aged 19-45 years, who received the multiprofessional animal-assisted intervention in groups of 6-12 participants. To measure emotion recognition, a computerized test, Vienna Emotion Recognition Tasks, was used to identify the emotion recognition capacity of the participants before and after 12 weeks of training. The hypotheses were tested using a general linear model with repeated measures, and effect sizes were calculated to gain further insight. The effect size eta square was used to analyze the variables on practical relevance. Results showed that the highest changes with relevant effect sizes in the adult group concerned the correct identification of anger and fear as well as the overall number of correctly identified facial expressions, including a decrease in latency to respond. The children also significantly increased their capacity for the recognition of anger and fear as well as disgust and neutral facial expressions. Additionally, they identified 5 more emotions correctly after the training and also decreased their latency to respond. The participants identified more emotions correctly and decreased their latency to respond significantly, even though "only" facial and/or emotional expressions of dogs were part of the program. A generalization process from human-dog interaction to human-human interaction seems to occur. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:108 / 114
页数:7
相关论文
共 50 条
  • [41] Emotion Recognition in E-learning Systems
    El Hammoumi, Oussama
    Benmarrakchi, Fatimaezzahra
    Ouherrou, Nihal
    El Kafi, Jamal
    El Hore, Ali
    PROCEEDINGS OF 2018 6TH INTERNATIONAL CONFERENCE ON MULTIMEDIA COMPUTING AND SYSTEMS (ICMCS), 2018, : 52 - 57
  • [42] Dimensional Music Emotion Recognition by Machine Learning
    Bai, Junjie
    Feng, Lixiao
    Peng, Jun
    Shi, Jinliang
    Luo, Kan
    Li, Zuojin
    Liao, Lu
    Wang, Yingxu
    INTERNATIONAL JOURNAL OF COGNITIVE INFORMATICS AND NATURAL INTELLIGENCE, 2016, 10 (04) : 74 - 89
  • [43] Speech emotion recognition with unsupervised feature learning
    Zheng-wei Huang
    Wen-tao Xue
    Qi-rong Mao
    Frontiers of Information Technology & Electronic Engineering, 2015, 16 : 358 - 366
  • [44] Emotion Recognition in Speech with Deep Learning Architectures
    Erdal, Mehmet
    Kaechele, Markus
    Schwenker, Friedhelm
    ARTIFICIAL NEURAL NETWORKS IN PATTERN RECOGNITION, 2016, 9896 : 298 - 311
  • [45] Transfer Learning Based Facial Emotion Recognition
    M. S. Lavanya
    Vanishri Arun
    Mayura Tapkire
    K. P. Suhaas
    SN Computer Science, 6 (1)
  • [46] Emotion Recognition Using Multimodal Deep Learning
    Liu, Wei
    Zheng, Wei-Long
    Lu, Bao-Liang
    NEURAL INFORMATION PROCESSING, ICONIP 2016, PT II, 2016, 9948 : 521 - 529
  • [47] Learning Spontaneity to Improve Emotion Recognition in Speech
    Mangalam, Karttikeya
    Guha, Tanaya
    19TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2018), VOLS 1-6: SPEECH RESEARCH FOR EMERGING MARKETS IN MULTILINGUAL SOCIETIES, 2018, : 946 - 950
  • [48] Speech emotion recognition with unsupervised feature learning
    Zheng-wei HUANG
    Wen-tao XUE
    Qi-rong MAO
    Frontiers of Information Technology & Electronic Engineering, 2015, 16 (05) : 358 - 366
  • [49] LEARNING WITH SYNTHESIZED SPEECH FOR AUTOMATIC EMOTION RECOGNITION
    Schuller, Bjoern
    Burkhardt, Felix
    2010 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2010, : 5150 - 5153
  • [50] Deep Continual Learning for Emerging Emotion Recognition
    Thuseethan, Selvarajah
    Rajasegarar, Sutharshan
    Yearwood, John
    IEEE TRANSACTIONS ON MULTIMEDIA, 2022, 24 : 4367 - 4380