Decentralized State Estimation and Bad Measurement Identification: An Efficient Lagrangian Relaxation Approach

被引:31
|
作者
Caro, Eduardo [1 ]
Conejo, Antonio J. [1 ]
Minguez, Roberto [2 ,3 ]
机构
[1] Univ Castilla La Mancha, E-13071 Ciudad Real, Spain
[2] Univ Cantabria, Cantabria, Spain
[3] IH, Environm Hydraul Inst, Cantabria, Spain
关键词
Bad measurement identification; decentralization; Lagrangian relaxation; state estimation; PARALLEL;
D O I
10.1109/TPWRS.2011.2157367
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper proposes a decentralized state-estimation approach that relies on an elaborated instance of the Lagrangian relaxation decomposition technique. The proposed algorithm does not require a central coordinator but just to moderate interchanges of information among neighboring regions, and exploits the structure of the problem to achieve a fast and accurate convergence. Additionally, a decentralized bad measurement identification procedure is developed, which is efficient and robust in terms of identifying bad measurements within regions and in border tie-lines. The accuracy and efficiency of the proposed procedures are assessed by a large number of simulations, which allows drawing statistically sound conclusions.
引用
收藏
页码:2500 / 2508
页数:9
相关论文
共 50 条
  • [21] Dynamic State Estimation Method for Generator Considering Measurement of Bad Data
    Ma A.
    Jiang Q.
    Xiong H.
    Lu H.
    [J]. Jiang, Quanyuan (jqy@zju.edu.cn), 1600, Automation of Electric Power Systems Press (41): : 140 - 146
  • [22] Mitigating Bad Data and Measurement Delay in Nonlinear Dynamic State Estimation
    Hajiyani, Parivash
    Lev-Ari, Hanoch
    Stankovic, Aleksandar M.
    [J]. 2016 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2016, : 678 - 681
  • [23] MULTIPLE BAD DATA IDENTIFICATION FOR STATE ESTIMATION BY COMBINATORIAL OPTIMIZATION.
    Monticelli, A.
    Wu, Felix F.
    Yen, Maosong
    [J]. IEEE Transactions on Power Delivery, 1985, PWRD-1 (03) : 361 - 369
  • [24] Bad data identification in voltage sag state estimation of distribution system
    Zhang, Guo-Hui
    Wang, Bin
    Pan, Zhen-Cun
    Gao, Peng
    [J]. Dianwang Jishu/Power System Technology, 2010, 34 (08): : 69 - 73
  • [25] A BAD DATA IDENTIFICATION METHOD FOR LINEAR-PROGRAMMING STATE ESTIMATION
    ABUR, A
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 1990, 5 (03) : 894 - 901
  • [26] FAST IDENTIFICATION OF BAD DATA IN POWER SYSTEM TRACKING STATE ESTIMATION
    SIRISENA, HR
    BROWN, EPM
    [J]. ELECTRIC POWER SYSTEMS RESEARCH, 1981, 4 (04) : 297 - 308
  • [27] An Efficient Approach for Parameter Correction in State Estimation
    Mohapatra, A.
    Bijwe, P. R.
    Panigrahi, B. K.
    [J]. 2013 IEEE POWER AND ENERGY SOCIETY GENERAL MEETING (PES), 2013,
  • [28] Efficient Network Partitioning: Application for Decentralized State Estimation in Power Distribution Grids
    Rout, Biswajeet
    Saraswat, Govind
    Natarajan, Balasubramaniam
    [J]. 2023 IEEE POWER & ENERGY SOCIETY INNOVATIVE SMART GRID TECHNOLOGIES CONFERENCE, ISGT, 2023,
  • [29] NEW APPROACH TO SYSTEM IDENTIFICATION AND STATE ESTIMATION
    BUDIN, MA
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1972, SMC2 (03): : 396 - +
  • [30] Impact of concentration measurement upon estimation of flow and transport parameters: The Lagrangian approach
    Dagan, G
    Butera, I
    Grella, E
    [J]. WATER RESOURCES RESEARCH, 1996, 32 (02) : 297 - 306