Antisymmetric wave functions for mixed fermion states and energy convexity

被引:5
|
作者
Gonis, A. [1 ,2 ]
Zhang, X. -G. [3 ,4 ]
Nicholson, D. M. [4 ]
Stocks, G. M. [5 ]
机构
[1] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA
[2] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA
[3] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA
[4] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA
[5] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA
来源
PHYSICAL REVIEW B | 2011年 / 84卷 / 04期
关键词
DENSITY; PARTICLE; SYSTEMS;
D O I
10.1103/PhysRevB.84.045121
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We show how ensembles or mixed states can be described in terms of pure states that for Fermions lead to wave functions that are antisymmetric with respect to interchange of particle coordinates (and spin). The pure states are constructed in an augmented Hilbert space spanned by products of ensemble states projected onto mutually nonoverlapping coordinates that prevents the appearance of interference terms under antisymmetrization. As a demonstration of this new formalism, and under the assumptions of a positive interparticle interaction and a corresponding energy that is extensive in the number of particle pairs (pair extensive), we prove the convexity relation, E-v [N - 1] + E-v[N + 1] >= 2E(v)[N], where E-v[N] denotes the total ground-state energy of N Fermions (electrons) under an external potential v(r).
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Valley-Chiral Edge States of Antisymmetric Plate Wave in Phononic Crystals with Linear Defect
    Zhao, Jinfeng
    Yuan, Weitao
    Yang, Fan
    Zhong, Zheng
    ACTA MECHANICA SOLIDA SINICA, 2021, 34 (06) : 810 - 819
  • [42] COHESIVE ENERGY AND WAVE FUNCTIONS FOR RUBIDIUM
    CALLAWAY, J
    MORGAN, DF
    PHYSICAL REVIEW, 1958, 112 (02): : 334 - 336
  • [43] Valley-Chiral Edge States of Antisymmetric Plate Wave in Phononic Crystals with Linear Defect
    Jinfeng Zhao
    Weitao Yuan
    Fan Yang
    Zheng Zhong
    Acta Mechanica Solida Sinica, 2021, 34 : 810 - 819
  • [44] Self-energy of a nodal fermion in a d-wave superconductor
    Chubukov, A. V.
    Tsvelik, A. M.
    PHYSICAL REVIEW B, 2006, 73 (22)
  • [45] Convexity of Structure Preserving Energy Functions in Power Transmission: Novel Results and Applications
    Dvijotham, Krishnamurthy
    Chertkov, Michael
    2015 AMERICAN CONTROL CONFERENCE (ACC), 2015, : 5035 - 5042
  • [46] Wave height distribution in mixed sea states
    Rodriguez, G
    Soares, CG
    Pacheco, M
    Pérez-Martell, E
    JOURNAL OF OFFSHORE MECHANICS AND ARCTIC ENGINEERING-TRANSACTIONS OF THE ASME, 2002, 124 (01): : 34 - 40
  • [47] Theoretical estimates for the correlation energy of the unprojected composite fermion wave function
    Ciftja, O
    PHYSICA E, 2001, 9 (02): : 226 - 230
  • [48] WAVE-FUNCTIONS OF ATOMIC ELLIPTIC STATES
    LENA, C
    DELANDE, D
    GAY, JC
    EUROPHYSICS LETTERS, 1991, 15 (07): : 697 - 702
  • [49] WAVE FUNCTIONS FOR EXCITED STATES OF NEUTRAL HELIUM
    GREEN, LC
    KOLCHIN, EK
    JOHNSON, NC
    PHYSICAL REVIEW, 1965, 139 (2A): : A373 - &
  • [50] The correlation of wave functions with the states of physical systems
    Kemble, EC
    PHYSICAL REVIEW, 1935, 47 (12): : 0973 - 0974