Predicate selection for structural decision trees

被引:0
|
作者
Ng, KS [1 ]
Lloyd, JW [1 ]
机构
[1] Australian Natl Univ, Res Sch Informat Sci & Engn, Comp Sci Lab, Canberra, ACT, Australia
来源
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We study predicate selection functions (also known as splitting rules) for structural decision trees and propose two improvements to existing schemes. The first is in classification learning, where we reconsider the use of accuracy as a predicate selection function and show that, on practical grounds, it is a better alternative to other commonly used functions. The second is in regression learning, where we consider the standard mean squared error measure and give a predicate pruning result for it.
引用
收藏
页码:264 / 278
页数:15
相关论文
共 50 条
  • [21] PARAMETERIZED REACHABILITY TREES FOR PREDICATE TRANSITION NETS
    LINDQVIST, M
    ACTA POLYTECHNICA SCANDINAVICA-MATHEMATICS AND COMPUTER SCIENCE SERIES, 1989, (54): : 1 - 120
  • [22] Efficient Detection of Botnet Traffic by Features Selection and Decision Trees
    Velasco-Mata, Javier
    Gonzalez-Castro, Victor
    Fernandez, Eduardo Fidalgo
    Alegre, Enrique
    IEEE ACCESS, 2021, 9 : 120567 - 120579
  • [23] Feature selection for the naive Bayesian classifier using decision trees
    Ratanamahatana, C
    Gunopulos, D
    APPLIED ARTIFICIAL INTELLIGENCE, 2003, 17 (5-6) : 475 - 487
  • [24] PERFORMANCE INDICATOR SELECTION USING DECISION TREES IN ELITE HANDBALL
    Cabrera Quercini, I
    Gonzalez-Ramirez, A.
    Garcia Tormo, J., V
    Martinez, I
    REVISTA INTERNACIONAL DE MEDICINA Y CIENCIAS DE LA ACTIVIDAD FISICA Y DEL DEPORTE, 2022, 22 (88): : 753 - 764
  • [25] EMBEDDED FEATURE SELECTION OF HYPERSPECTRAL BANDS WITH BOOSTED DECISION TREES
    Monteiro, Sildomar T.
    Murphy, Richard J.
    2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2011, : 2361 - 2364
  • [26] Feature selection using decision trees in the problem of JSM classification
    I. B. Yashkov
    Automatic Documentation and Mathematical Linguistics, 2014, 48 (1) : 6 - 11
  • [27] A new criterion in selection and discretization of attributes for the generation of decision trees
    Jun, BH
    Kim, CS
    Song, HY
    Kim, J
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1997, 19 (12) : 1371 - 1375
  • [28] SELECTION OF ACADEMIC TUTORS IN HIGHER EDUCATION USING DECISION TREES
    Urbina Najera, Argelia B.
    de la Calleja, Jorge
    REVISTA ESPANOLA DE ORIENTACION Y PSICOPEDAGOGIA, 2018, 29 (01): : 108 - 124
  • [29] Classifier Selection using Predicate Depth
    Gilad-Bachrach, Ran
    Burgs, Christopher J. C.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2013, 14 : 3591 - 3618
  • [30] COMPONENT BASIS FOR A PREDICATE ALGEBRA OF SELECTION
    VOLGIN, LI
    SOVIET JOURNAL OF COMPUTER AND SYSTEMS SCIENCES, 1988, 26 (02): : 138 - 143