Width of a scale-free tree

被引:11
|
作者
Katona, Z [1 ]
机构
[1] Eotvos Lorand Univ, H-1364 Budapest, Hungary
关键词
random graph; scale-free distribution; width of trees;
D O I
10.1239/jap/1127322031
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider the random graph model of Barabasi and Albert, where we add a new vertex in every step and connect it to some old vertices with probabilities proportional to their degrees. If we connect it to only one of the old vertices then this will be a tree. These graphs have been shown to have a power-law degree distribution, the same as that observed in some large real-world networks. We are interested in the width of the tree and we show that it is W(n) similar to n/ root pi log n at the nth step; this also holds for a slight generalization of the model with another constant. We then see how this theoretical result can be applied to directory trees.
引用
收藏
页码:839 / 850
页数:12
相关论文
共 50 条
  • [31] Directed scale-free graphs
    Bollobás, B
    Borgs, C
    Chayes, J
    Riordan, O
    PROCEEDINGS OF THE FOURTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2003, : 132 - 139
  • [32] Subhaloes in scale-free cosmologies
    Elahi, Pascal J.
    Thacker, Robert J.
    Widrow, Lawrence M.
    Scannapieco, Evan
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2009, 395 (04) : 1950 - 1962
  • [33] Scale-free homophilic network
    Maurício L. de Almeida
    Gabriel A. Mendes
    G. Madras Viswanathan
    Luciano R. da Silva
    The European Physical Journal B, 2013, 86
  • [34] Are RNA networks scale-free?
    Clote, P.
    JOURNAL OF MATHEMATICAL BIOLOGY, 2020, 80 (05) : 1291 - 1321
  • [35] The paradox of the scale-free discs
    Goodman, J
    Evans, NW
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1999, 309 (03) : 599 - 609
  • [36] Scale-free online learning
    Orabona, Francesco
    Pal, David
    THEORETICAL COMPUTER SCIENCE, 2018, 716 : 50 - 69
  • [37] On the utility of scale-free networks
    Norris, V
    Raine, D
    BIOESSAYS, 2006, 28 (05) : 563 - 564
  • [38] Growing scale-free simplices
    Kiriil Kovalenko
    Irene Sendiña-Nadal
    Nagi Khalil
    Alex Dainiak
    Daniil Musatov
    Andrei M. Raigorodskii
    Karin Alfaro-Bittner
    Baruch Barzel
    Stefano Boccaletti
    Communications Physics, 4
  • [39] Scale-free networks in metabolomics
    Rajula, Hema Sekhar Reddy
    Mauri, Matteo
    Fanos, Vassilios
    BIOINFORMATION, 2018, 14 (03) : 140 - 144
  • [40] Security of scale-free networks
    Gala̧zka M.
    Szymański J.
    Journal of Mathematical Sciences, 2012, 182 (2) : 200 - 209