A fast algorithm for the linear complexity of periodic sequences

被引:0
|
作者
Wei, SM [1 ]
Chen, Z
Wang, Z
机构
[1] Huaibei Coal Normal Coll, Dept Comp Sci & Technol, Huaibei 235000, Peoples R China
[2] Peking Univ, Dept Comp Sci & Technol, Beijing 100871, Peoples R China
来源
CHINESE JOURNAL OF ELECTRONICS | 2004年 / 13卷 / 01期
关键词
cryptography; stream cipher; periodic sequence; linear complexity; minimal polynomial; fast algorithm;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
An efficient algorithm for determining the linear complexity and the minimal polynomial of a sequence with period 2p(m)q(n) over a finite field GF(q) is proposed, where p and q are primes, and q is a primitive root modulo p(2). The new algorithm generalizes the algorithm for computing the linear complexity of a sequence with period q(n) over GF(q) and the algorithm for computing one of a sequence with period 2p(m) over GF(q).
引用
收藏
页码:86 / 91
页数:6
相关论文
共 50 条
  • [41] Complexity Certification of the Fast Alternating Minimization Algorithm for Linear MPC
    Pu, Ye
    Zeilinger, Melanie N.
    Jones, Colin N.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (02) : 888 - 893
  • [42] A formula on linear complexity of highest coordinate sequences from maximal periodic sequences over Galois rings
    HU Lei and SUN Nigang (State Key Laboratory of Information Security
    Progress in Natural Science, 2006, (09) : 998 - 1001
  • [43] A formula on linear complexity of highest coordinate sequences from maximal periodic sequences over Galois rings
    Hu Lei
    Sun Nigang
    PROGRESS IN NATURAL SCIENCE-MATERIALS INTERNATIONAL, 2006, 16 (09) : 998 - 1001
  • [44] Relationally Periodic Sequences and Subword Complexity
    Cassaigne, Julien
    Kaerki, Tomi
    Zamboni, Luca Q.
    DEVELOPMENTS IN LANGUAGE THEORY, PROCEEDINGS, 2008, 5257 : 196 - +
  • [45] On the linear complexity for multidimensional sequences
    Gomez-Perez, Domingo
    Sha, Min
    Tirkel, Andrew
    JOURNAL OF COMPLEXITY, 2018, 49 : 46 - 55
  • [46] Linear complexity of Kronecker sequences
    Karkkainen, KHA
    1998 IEEE 5TH INTERNATIONAL SYMPOSIUM ON SPREAD SPECTRUM TECHNIQUES AND APPLICATIONS - PROCEEDINGS, VOLS 1-3, 1998, : 51 - 55
  • [47] Linear complexity of polylinear sequences
    Kurakin, V.L.
    Discrete Mathematics and Applications, 2001, 11 (01): : 1 - 51
  • [48] LINEAR COMPLEXITY AND RANDOM SEQUENCES
    RUEPPEL, RA
    LECTURE NOTES IN COMPUTER SCIENCE, 1986, 219 : 167 - 188
  • [49] Linear complexity of Kronecker sequences
    Kärkkäinen, K.H.A.
    IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2001, E84-A (05) : 1348 - 1351
  • [50] Linear complexity of recurrent sequences
    Radiotekhnika, 1997, (02): : 72 - 77