Revisiting Skeleton-based Action Recognition

被引:294
|
作者
Duan, Haodong [1 ,3 ]
Zhao, Yue [2 ]
Chen, Kai [3 ,5 ]
Lin, Dahua [1 ,3 ]
Dai, Bo [3 ,4 ]
机构
[1] Chinese Univ HongKong, Hong Kong, Peoples R China
[2] Univ Texas Austin, Austin, TX 78712 USA
[3] Shanghai AI Lab, Shanghai, Peoples R China
[4] Nanyang Technol Univ, S Lab, Singapore, Singapore
[5] SenseTime Res, Shenzhen, Peoples R China
关键词
D O I
10.1109/CVPR52688.2022.00298
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Human skeleton, as a compact representation of human action, has received increasing attention in recent years. Many skeleton-based action recognition methods adopt GCNs to extract features on top of human skeletons. Despite the positive results shown in these attempts, GCN-based methods are subject to limitations in robustness, interoperability, and scalability. In this work, we propose PoseConv3D, a new approach to skeleton-based action recognition. PoseConv3D relies on a 3D heatmap volume instead of a graph sequence as the base representation of human skeletons. Compared to GCN-based methods, PoseConv3D is more effective in learning spatiotemporal features, more robust against pose estimation noises, and generalizes better in cross-dataset settings. Also, PoseConv3D can handle multiple-person scenarios without additional computation costs. The hierarchical features can be easily integrated with other modalities at early fusion stages, providing a great design space to boost the performance. PoseConv3D achieves the state-of-the-art on five of six standard skeleton-based action recognition benchmarks. Once fused with other modalities, it achieves the state-of-the-art on all eight multi-modality action recognition benchmarks. Code has been made available at: https://github.com/kennymckormick/pyskl.
引用
收藏
页码:2959 / 2968
页数:10
相关论文
共 50 条
  • [31] A lightweight graph convolutional network for skeleton-based action recognition
    Dinh-Tan Pham
    Quang-Tien Pham
    Tien-Thanh Nguyen
    Thi-Lan Le
    Hai Vu
    Multimedia Tools and Applications, 2023, 82 : 3055 - 3079
  • [32] Skeleton-Based Action Recognition with Directed Graph Neural Networks
    Shi, Lei
    Zhang, Yifan
    Cheng, Jian
    Lu, Hanqing
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 7904 - 7913
  • [33] Hierarchical Soft Quantization for Skeleton-Based Human Action Recognition
    Yang, Jianyu
    Liu, Wu
    Yuan, Junsong
    Mei, Tao
    IEEE TRANSACTIONS ON MULTIMEDIA, 2021, 23 : 883 - 898
  • [34] HybridNet: Integrating GCN and CNN for skeleton-based action recognition
    Wenjie Yang
    Jianlin Zhang
    Jingju Cai
    Zhiyong Xu
    Applied Intelligence, 2023, 53 : 574 - 585
  • [35] InfoGCN: Representation Learning for Human Skeleton-based Action Recognition
    Chi, Hyung-gun
    Ha, Myoung Hoon
    Chi, Seunggeun
    Lee, Sang Wan
    Huang, Qixing
    Ramani, Karthik
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 20154 - 20164
  • [36] Fusion sampling networks for skeleton-based human action recognition
    Chen, Guannan
    Wei, Shimin
    JOURNAL OF ELECTRONIC IMAGING, 2022, 31 (05)
  • [37] Deep Progressive Reinforcement Learning for Skeleton-based Action Recognition
    Tang, Yansong
    Tian, Yi
    Lu, Jiwen
    Li, Peiyang
    Zhou, Jie
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 5323 - 5332
  • [38] Graph-aware transformer for skeleton-based action recognition
    Zhang, Jiaxu
    Xie, Wei
    Wang, Chao
    Tu, Ruide
    Tu, Zhigang
    VISUAL COMPUTER, 2023, 39 (10): : 4501 - 4512
  • [39] Selective Hypergraph Convolutional Networks for Skeleton-based Action Recognition
    Zhu, Yiran
    Huang, Guangji
    Xu, Xing
    Ji, Yanli
    Shen, Fumin
    PROCEEDINGS OF THE 2022 INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL, ICMR 2022, 2022, : 518 - 526
  • [40] MOTION-LET CLUSTERING FOR SKELETON-BASED ACTION RECOGNITION
    Yang, Jianyu
    Zhu, Chen
    Yuan, Junsong
    2019 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA & EXPO WORKSHOPS (ICMEW), 2019, : 150 - 155