Consistency of blocking transformations in the finite-temperature renormalization group

被引:10
|
作者
Liao, SB [1 ]
Strickland, M
机构
[1] Natl Chung Cheng Univ, Dept Phys, Chiayi, Taiwan
[2] Univ Strasbourg 1, Theoret Phys Lab, F-67087 Strasbourg, France
[3] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA
基金
美国国家科学基金会;
关键词
renormalization; group; thermal; blocking;
D O I
10.1016/S0550-3213(98)00456-8
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The finite-temperature renormalization group is formulated via the Wilson-Kadanoff blocking transformation. Momentum modes and the Matsubara frequencies are coupled by constraints from a smearing function which plays the role of an infrared cutoff regulator. Using the scalar lambda phi(4) theory as an example, we consider four general types of smearing functions and show that, to zeroth order in the derivative expansion, they yield qualitatively the same temperature dependence of the running constants and the same critical exponents within numerical accuracy. (C) 1998 Elsevier Science B.V.
引用
收藏
页码:753 / 782
页数:30
相关论文
共 50 条
  • [31] Finite-Temperature Properties across the Charge Ordering Transition-Combined Bosonization, Renormalization Group, and Numerical Methods-
    Yoshioka, Hideo
    Tsuchiizu, Masahisa
    Otsuka, Yuichi
    Seo, Hitoshi
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2010, 79 (09)
  • [32] TRANSFORMATIONS OF REAL-TIME FINITE-TEMPERATURE FEYNMAN-RULES
    VANEIJCK, MA
    KOBES, R
    VANWEERT, CG
    PHYSICAL REVIEW D, 1994, 50 (06): : 4097 - 4109
  • [33] Reducing finite-size effects with reweighted renormalization group transformations
    Bachtis, Dimitrios
    PHYSICAL REVIEW E, 2024, 109 (01)
  • [34] Renormalization group in quantum mechanics at zero and finite temperature
    Gosselin, P.
    Mohrbach, H.
    Bérard, A.
    2001, American Institute of Physics Inc. (64): : 461291 - 461299
  • [35] Gauge-invariant renormalization group at finite temperature
    DAttanasio, M
    Pietroni, M
    NUCLEAR PHYSICS B, 1997, 498 (1-2) : 443 - 466
  • [36] FINITE TEMPERATURE RENORMALIZATION-GROUP EQUATION IN QCD
    FUJIMOTO, Y
    YAMADA, H
    PHYSICS LETTERS B, 1987, 195 (02) : 231 - 234
  • [37] Nuclear dipole response in the finite-temperature relativistic time-blocking approximation
    Wibowo, Herlik
    Litvinova, Elena
    PHYSICAL REVIEW C, 2019, 100 (02)
  • [38] Finite-Temperature Micromagnetism
    Skomski, Ralph
    Kumar, Pankaj
    Hadjipanayis, George C.
    Sellmyer, D. J.
    IEEE TRANSACTIONS ON MAGNETICS, 2013, 49 (07) : 3229 - 3232
  • [39] Finite-temperature regularization
    Fosco, CD
    Schaposnik, FA
    PHYSICS LETTERS B, 2002, 547 (1-2) : 69 - 78
  • [40] PIONS AT FINITE-TEMPERATURE
    SONG, CS
    PHYSICAL REVIEW D, 1994, 49 (03) : 1556 - 1565