SHAPE RESTORATION FOR ROBUST TANGENT PRINCIPAL COMPONENT ANALYSIS

被引:0
|
作者
Abboud, Michel [1 ]
Benzinou, Abdesslam [1 ]
Nasreddine, Kamal [1 ]
Jazar, Mustapha [2 ]
机构
[1] UEB, ENIB, UMR CNRS 6285, Lab STICC, F-29238 Brest, France
[2] Lebanese Univ, LaMA, Tripoli, Lebanon
关键词
Shape analysis; robust statistics; shape space; Tangent PCA; OUTLIER DETECTION;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Shape outliers can seriously affect the statistical analysis of the shape variations usually performed by the Principal Component Analysis PCA. This paper presents an algorithm for outliers detection and shape restoration as a new strategy for robust statistical shape analysis. The proposed framework is founded on an elastic metric in the shape space to cope with the nonlinear shape variability. The main contribution of this work is then a formulation of a robust PCA which describes main variations associated to correct shapes without outlier effects. The efficiency of this approach is demonstrated by an evaluation carried out on HAND-Kimia and HEART-Kimia databases.
引用
收藏
页码:473 / 478
页数:6
相关论文
共 50 条
  • [1] A robust tangent PCA via shape restoration for shape variability analysis
    Michel Abboud
    Abdesslam Benzinou
    Kamal Nasreddine
    Pattern Analysis and Applications, 2020, 23 : 653 - 671
  • [2] A robust tangent PCA via shape restoration for shape variability analysis
    Abboud, Michel
    Benzinou, Abdesslam
    Nasreddine, Kamal
    PATTERN ANALYSIS AND APPLICATIONS, 2020, 23 (02) : 653 - 671
  • [3] Robust principal component analysis
    Partridge, Matthew
    Jabri, Marwan
    Neural Networks for Signal Processing - Proceedings of the IEEE Workshop, 2000, 1 : 289 - 298
  • [4] A ROBUST PRINCIPAL COMPONENT ANALYSIS
    RUYMGAART, FH
    JOURNAL OF MULTIVARIATE ANALYSIS, 1981, 11 (04) : 485 - 497
  • [5] Robust Principal Component Analysis?
    Candes, Emmanuel J.
    Li, Xiaodong
    Ma, Yi
    Wright, John
    JOURNAL OF THE ACM, 2011, 58 (03)
  • [6] A robust principal component analysis
    Ibazizen, M
    Dauxois, J
    STATISTICS, 2003, 37 (01) : 73 - 83
  • [7] Robust principal component analysis
    Partridge, M
    Jabri, M
    NEURAL NETWORKS FOR SIGNAL PROCESSING X, VOLS 1 AND 2, PROCEEDINGS, 2000, : 289 - 298
  • [8] Tangent Hyperplane Kernel Principal Component Analysis for Denoising
    Im, Joon-Ku
    Apley, Daniel W.
    Runger, George C.
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2012, 23 (04) : 644 - 656
  • [9] ROBUST STATISTICAL SHAPE ANALYSIS BASED ON THE TANGENT SHAPE SPACE
    Abboud, Michel
    Benzinou, Abdesslam
    Nasreddine, Kamal
    Jazar, Mustapha
    2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 3520 - 3524
  • [10] Robust sparse principal component analysis
    ZHAO Qian
    MENG DeYu
    XU ZongBen
    Science China(Information Sciences), 2014, 57 (09) : 175 - 188