Reinforcing effect of single-wall carbon nanotubes on the LiNi0.6CO0.2Mn0.2O2 composite cathode for high-energy-density all-solid-state Li-ion batteries

被引:22
|
作者
Woo, Min-Hong [1 ]
Didwal, Pravin N. [2 ]
Kim, Hee-Joong [1 ]
Lim, Jin-Sub [1 ]
Nguyen, An-Giang [2 ]
Jin, Chang-Soo [3 ]
Chang, Duck Rye [1 ]
Park, Chan-Jin [2 ]
机构
[1] Korea Inst Ind Technol, Appl Opt & Energy Res Grp, 208-6 Cheomdangwagiro, Gwangju 61012, South Korea
[2] Chonnam Natl Univ, Dept Mat Sci & Engn, 77 Yongbong Ro, Gwangju 61186, South Korea
[3] Korea Inst Energy Res, 152 Gajeong Ro, Daejeon 34129, South Korea
基金
新加坡国家研究基金会;
关键词
LiNi(0.6)CO(0.2)Mn(0.2)O(2 )cathode; Single wall carbon nanotube; All-solid-state Li-ion batteries; High energy density; LITHIUM; ELECTRODE; CAPACITY; NI; PERFORMANCE; ADDITIVES; OXIDE;
D O I
10.1016/j.apsusc.2021.150934
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Enhancing the effective electronic transportation pathways and high loading mass of cathode are the challenges for high energy density solid-state batteries. We successfully enhanced significantly the electrochemical characteristics of all-solid-state Li-ion battery (ASSLIB) composed of graphite/SiOx anode, PVDF-HFP/Al2O3 based composite solid polymer electrolyte (CSPE), and LiNi0.6CO0.2Mn0.2O2 cathode with high proportion of 96.94 wt% in cathode by employing only small amount (0.06 wt%) of SWCNT in electrodes. The Li/CSPE/NCM@CNT cell maintained a capacity of 2.31 mAh cm(-2) at rate of 0.5C with a capacity retention of similar to 93% over 50 cycles. Moreover, The Li/CSPE/G-SiOx@CNT cell delivered an areal charge capacity of 3.7 mAh cm(-2) at a rate of 0.5C. Furthermore, the ASSLIBs with a high cathode mass loading of 36.4 mg cm(-2) delivered a high areal capacity of 4.04 mAh cm(-2) and successfully operated for longer than 300 cycles at rate of 0.5C. The ASSLIBs show excellent cyclability with capacity retention of similar to 80% and coulombic efficiency of approximately 100%, even at a considerably high cathode mass loading of 36.4 mg cm(-2) at a rate of 0.5C. The SWCNT form a conductive network throughout the electrodes by providing prolonged electron transport pathways and enhance the overall electrochemical properties of ASSLIBs.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] WO3 membrane-encapsulated layered LiNi0.6Co0.2Mn0.2O2 cathode material for advanced Li-ion batteries
    Song, Guowen
    Zhong, Hui
    Dai, Yanyang
    Zhou, Xiangyang
    Yang, Juan
    CERAMICS INTERNATIONAL, 2019, 45 (06) : 6774 - 6781
  • [22] Surface Construction of a High-Ionic-Conductivity Buffering Layer on a LiNi0.6Co0.2Mn0.2O2 Cathode for Stable All-Solid-State Sulfide-Based Batteries
    Zhong, Yu
    Fan, Zhaoze
    Zhang, Daozhen
    Su, Min
    Wang, Xiuli
    Tu, Jiangping
    JOURNAL OF ELECTRONIC MATERIALS, 2023, 52 (05) : 2904 - 2912
  • [23] Synthesis and electrochemical properties of Mg-doped LiNi0.6Co0.2Mn0.2O2 cathode materials for Li-ion battery
    Chunyan Fu
    Zhongliu Zhou
    Yonghui Liu
    Qian Zhang
    Yansheng Zheng
    Gengxi Li
    Journal of Wuhan University of Technology-Mater. Sci. Ed., 2011, 26 : 211 - 215
  • [24] Synthesis and Electrochemical Properties of Mg-doped LiNi0.6Co0.2Mn0.2O2 Cathode Materials for Li-ion Battery
    傅春燕
    Journal of Wuhan University of Technology(Materials Science), 2011, (02) : 212 - 216
  • [25] Synthesis and Electrochemical Properties of Mg-doped LiNi0.6Co0.2Mn0.2O2 Cathode Materials for Li-ion Battery
    Fu Chunyan
    Zhou Zhongliu
    Liu Yonghui
    Zhang Qian
    Zheng Yansheng
    Li Gengxi
    JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY-MATERIALS SCIENCE EDITION, 2011, 26 (02): : 212 - 216
  • [26] Surface Construction of a High-Ionic-Conductivity Buffering Layer on a LiNi0.6Co0.2Mn0.2O2 Cathode for Stable All-Solid-State Sulfide-Based Batteries
    Yu Zhong
    Zhaoze Fan
    Daozhen Zhang
    Min Su
    Xiuli Wang
    Jiangping Tu
    Journal of Electronic Materials, 2023, 52 : 2904 - 2912
  • [27] Improved rate capability of highly loaded carbon fiber-interwoven LiNi0.6Co0.2Mn0.2O2 cathode material for high-power Li-ion batteries
    Kang, Joonsup
    Pham, Hieu Quang
    Kang, Dong-Hyun
    Park, Ho-Young
    Song, Seung-Wan
    JOURNAL OF ALLOYS AND COMPOUNDS, 2016, 657 : 464 - 471
  • [28] Temperature dependent electrochemical performance of LiNi0.6Co0.2Mn0.2O2 coated with Li2ZrO3 for Li-ion batteries
    Kim, Young-Jin
    Ryu, Kwang-Sun
    JOURNAL OF ELECTROCERAMICS, 2020, 45 (03) : 99 - 110
  • [29] Synthesis and electrochemical characteristics of layered LiNi0.6Co0.2Mn0.2O2 cathode material for lithium ion batteries
    Cao, H
    Zhang, Y
    Zhang, H
    Xia, BJ
    SOLID STATE IONICS, 2005, 176 (13-14) : 1207 - 1211
  • [30] Temperature dependent electrochemical performance of LiNi0.6Co0.2Mn0.2O2 coated with Li2ZrO3 for Li-ion batteries
    Young-Jin Kim
    Kwang-Sun Ryu
    Journal of Electroceramics, 2020, 45 : 99 - 110