Low temperature synthesis and ion conductivity of Li7La3Zr2O12 garnets for solid state Li ion batteries

被引:28
|
作者
Feng, Liuliu [1 ]
Li, Ling [1 ]
Zhang, Yunqiang [1 ]
Peng, Hongjian [1 ]
Zou, Yingping [1 ]
机构
[1] Cent S Univ, Coll Chem & Chem Engn, Changsha 410083, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Li-ion solid electrolyte; Garnet-type electrolyte; Solid-state reaction; Lithium ion battery; LITHIUM; TRANSPORT;
D O I
10.1016/j.ssi.2017.08.016
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this paper, the effects of sintering additives B2O3 on sintering temperature, microstructure and transport properties of the Li7La3Zr2O12 (LLZ) ceramics prepared by solid state reaction are reported. The optimized conditions to synthesize the LLZ-xB(2)O(3) (x = 0.2-0.35)ceramics is 950 degrees C for 30 h with 10% excess lithium salt, which is nearly 300 degrees C lower than that by the conventional solid state reaction. Qualitative phase analysis by Xray powder diffraction patterns combined with the Rietveld method reveals garnet type compounds as major phases. Lithium ion conductivity of LLZ-0.3B(2)O(3) was studied by AC impedance method. LLZ-0.3B(2)O(3) ceramics exhibits the highest total ionic conductivity of 2.5 x 10(-4)S cm(-1) at room temperature. All solid state batteries consisting of Li/LLZ-0.3B(2)O(3)/mixture of LiMn2O4 and LLZ-0.3B(2)O(3)/LiMn2O4 cell exhibit the capacity of 102.6 mAh g(-1) at a current density of 5 mu Acm(-2) at the first discharge, which could run for 20 cycles with capacity retention of 94%.
引用
收藏
页码:129 / 133
页数:5
相关论文
共 50 条
  • [21] Effect of Li3BO3 Additive on Densification and Ion Conductivity of Garnet-Type Li7La3Zr2O12 Solid Electrolytes of All-Solid-State Lithium-Ion Batteries
    Shin, Ran-Hee
    Son, Sam-Ick
    Lee, Sung-Min
    Han, Yoon Soo
    Kim, Yong Do
    Ryu, Sung-Soo
    JOURNAL OF THE KOREAN CERAMIC SOCIETY, 2016, 53 (06) : 712 - 718
  • [22] Reaction Kinetics of Carbonation at the Surface of Garnet-Type Li7La3Zr2O12 as Solid Electrolytes for All-Solid-State Li Ion Batteries
    Nakayama, Masanobu
    Horie, Takuya
    Natsume, Ryosuke
    Hashimura, Shogo
    Tanibata, Naoto
    Takeda, Hayami
    Maeda, Hirotaka
    Kotobuki, Masashi
    JOURNAL OF PHYSICAL CHEMISTRY C, 2023, 127 (16): : 7595 - 7601
  • [23] Gd-doped Li7La3Zr2O12 garnet-type solid electrolytes for all-solid-state Li-Ion batteries
    Song, Shidong
    Chen, Butian
    Ruan, Yanli
    Sun, Jian
    Yu, Limei
    Wang, Yan
    Thokchom, Joykumar
    ELECTROCHIMICA ACTA, 2018, 270 : 501 - 508
  • [24] Nanostructured Garnet-type Li7La3Zr2O12: Synthesis, Properties, and Opportunities as Electrolytes for Li-ion Batteries
    Chan, Candace K.
    Yang, Ting
    Weller, J. Mark
    ELECTROCHIMICA ACTA, 2017, 253 : 268 - 280
  • [25] Improved Ga-doped Li7La3Zr2O12 garnet-type solid electrolytes for solid-state Li-ion batteries
    Omid Sharifi
    Mohammad Golmohammad
    Mozhde Soozandeh
    Alireza Soleimany Mehranjani
    Journal of Solid State Electrochemistry, 2023, 27 : 2433 - 2444
  • [26] Improved Ga-doped Li7La3Zr2O12 garnet-type solid electrolytes for solid-state Li-ion batteries
    Sharifi, Omid
    Golmohammad, Mohammad
    Soozandeh, Mozhde
    Mehranjani, Alireza Soleimany
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2023, 27 (09) : 2433 - 2444
  • [27] Origin of High Li+ Conduction in Doped Li7La3Zr2O12 Garnets
    Chen, Yan
    Rangasamy, Ezhiylmurugan
    Lang, Chengdu
    An, Ke
    CHEMISTRY OF MATERIALS, 2015, 27 (16) : 5491 - 5494
  • [28] Low-temperature densification of Al-doped Li7La3Zr2O12: a reliable and controllable synthesis of fast-ion conducting garnets
    El-Shinawi, Hany
    Paterson, Gary W.
    MacLaren, Donald A.
    Cussen, Edmund J.
    Corr, Serena A.
    JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (01) : 319 - 329
  • [29] Grain Boundary Contributions to Li-Ion Transport in the Solid Electrolyte Li7La3Zr2O12 (LLZO)
    Yu, Seungho
    Siegel, Donald J.
    CHEMISTRY OF MATERIALS, 2017, 29 (22) : 9639 - 9647
  • [30] Cubic phase behavior and lithium ion conductivity of Li7La3Zr2O12 prepared by co-precipitation synthesis for all-solid batteries
    Kim, Kyeong-wan
    Yang, Seung-Hoon
    Kim, Min Young
    Lee, Moo Sung
    Lim, Jinsub
    Chang, Duck Rye
    Kim, Ho-Sung
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2016, 36 : 279 - 283