Recurrent structural RNA motifs, isostericity matrices and sequence alignments

被引:184
|
作者
Lescoute, A
Leontis, NB
Massire, C
Westhof, E
机构
[1] Univ Strasbourg 1, Inst Biol Mol & Cellulaire, CNRS, UPR 9002, F-67084 Strasbourg, France
[2] Bowling Green State Univ, Dept Chem, Bowling Green, OH 43403 USA
[3] Bowling Green State Univ, Ctr Biomol Sci, Bowling Green, OH 43403 USA
[4] Ibis Therapeut, Carlsbad Res Ctr, Carlsbad, CA 92008 USA
关键词
D O I
10.1093/nar/gki535
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The occurrences of two recurrent motifs in ribosomal RNA sequences, the Kink-turn and the C-loop, are examined in crystal structures and systematically compared with sequence alignments of rRNAs from the three kingdoms of life in order to identify the range of the structural and sequence variations. Isostericity Matrices are used to analyze structurally the sequence variations of the characteristic non-Watson-Crick base pairs for each motif. We show that Isostericity Matrices for non-Watson-Crick base pairs provide important tools for deriving the sequence signatures of recurrent motifs, for scoring and refining sequence alignments, and for determining whether motifs are conserved throughout evolution. The systematic use of Isostericity Matrices identifies the positions of the insertion or deletion of one or more nucleotides relative to the structurally characterized examples of motifs and, most importantly, specifies whether these changes result in new motifs. Thus, comparative analysis coupled with Isostericity Matrices allows one to produce and refine structural sequence alignments. The analysis, based on both sequence and structure, permits therefore the evaluation of the conservation of motifs across phylogeny and the derivation of rules of equivalence between structural motifs. The conservations observed in Isostericity Matrices form a predictive basis for identifying motifs in sequences.
引用
收藏
页码:2395 / 2409
页数:15
相关论文
共 50 条
  • [41] Structural and Sequence Motifs in Helix-Helix Interactions
    Zhang, Shaoqing
    Kulp, Daniel
    Schramm, Chaim
    Senes, Alessandro
    DeGrado, William
    PROTEIN SCIENCE, 2012, 21 : 139 - 140
  • [42] Structural and sequence motifs of protein (histone) methylation enzymes
    Cheng, XD
    Collins, RE
    Zhang, X
    ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE, 2005, 34 : 267 - 294
  • [43] Finding common sequence and structure motifs in a set of RNA sequences
    Gorodkin, J
    Heyer, LJ
    Stormo, GD
    ISMB-97 - FIFTH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS FOR MOLECULAR BIOLOGY, PROCEEDINGS, 1997, : 120 - 123
  • [44] FINDING SPECIFIC RNA SEQUENCE MOTIFS USING DIGITAL FILTERS
    Rajasekhar, K.
    Ahmad, M. Omair
    Devabhaktuni, Vijay
    2012 25TH IEEE CANADIAN CONFERENCE ON ELECTRICAL & COMPUTER ENGINEERING (CCECE), 2012,
  • [45] RNA structural motifs: building blocks of a modular biomolecule
    Hendrix, Donna K.
    Brenner, Steven E.
    Holbrook, Stephen R.
    QUARTERLY REVIEWS OF BIOPHYSICS, 2005, 38 (03) : 221 - 243
  • [46] Understanding the Thermodynamics of Magnesium Binding to RNA Structural Motifs
    Cowan, J. A.
    LIFE-BASEL, 2024, 14 (06):
  • [47] Informatic Resources for Identifying and Annotating Structural RNA Motifs
    Ajish D. George
    Scott A. Tenenbaum
    Molecular Biotechnology, 2009, 41
  • [48] Informatic Resources for Identifying and Annotating Structural RNA Motifs
    George, Ajish D.
    Tenenbaum, Scott A.
    MOLECULAR BIOTECHNOLOGY, 2009, 41 (02) : 180 - 193
  • [49] Identifying RNA structural motifs with the SCOR database.
    Hendrix, DK
    Klosterman, PS
    Tamura, M
    Stefan, L
    Brenner, SE
    Holbrook, SR
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2004, 227 : U911 - U911
  • [50] A structural database for k-turn motifs in RNA
    Schroeder, Kersten T.
    McPhee, Scott A.
    Ouellet, Jonathan
    Lilley, David M. J.
    RNA, 2010, 16 (08) : 1463 - 1468