Handling Climate Change Using Counterfactuals: Using Counterfactuals in Data Augmentation to Predict Crop Growth in an Uncertain Climate Future

被引:5
|
作者
Temraz, Mohammed [1 ,2 ]
Kenny, Eoin M. [2 ]
Ruelle, Elodie [3 ]
Shalloo, Laurence [3 ]
Smyth, Barry [1 ]
Keane, Mark T. [1 ,2 ]
机构
[1] Univ Coll Dublin, Insight Ctr Data Analyt, Dublin, Ireland
[2] Univ Coll Dublin, VistaMilk SFI Res Ctr, Dublin, Ireland
[3] TEAGASC, Anim & Grassland Res, VistaMilk SFI Res Ctr, Fermoy, Cork, Ireland
关键词
Climate change; Counterfactual; Data augmentation; Grass;
D O I
10.1007/978-3-030-86957-1_15
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Climate change poses a major challenge to humanity, especially in its impact on agriculture, a challenge that a responsible AI should meet. In this paper, we examine a CBR system (PBI-CBR) designed to aid sustainable dairy farming by supporting grassland management, through accurate crop growth prediction. As climate changes, PBI-CBR's historical cases become less useful in predicting future grass growth. Hence, we extend PBI-CBR using data augmentation, to specifically handle disruptive climate events, using a counterfactual method (from XAI). Study 1 shows that historical, extreme climate-events (climate outlier cases) tend to be used by PBI-CBR to predict grass growth during climate disrupted periods. Study 2 shows that synthetic outliers, generated as counterfactuals on an outlier-boundary, improve the predictive accuracy of PBI-CBR, during the drought of 2018. This study also shows that an case-based counterfactual method does better than a benchmark, constraint-guided method.
引用
收藏
页码:216 / 231
页数:16
相关论文
共 50 条
  • [32] Identification of a change in climate state using regional flood data
    Franks, SW
    HYDROLOGY AND EARTH SYSTEM SCIENCES, 2002, 6 (01) : 11 - 16
  • [33] Partitioning Uncertainty Components of an Incomplete Ensemble of Climate Projections Using Data Augmentation
    Evin, Guillaume
    Hingray, Benoit
    Blanchet, Juliette
    Eckert, Nicolas
    Morin, Samuel
    Verfaillie, Deborah
    JOURNAL OF CLIMATE, 2019, 32 (08) : 2423 - 2440
  • [34] Tamarixia radiata global distribution to current and future climate using the climate change experiment (CLIMEX) model
    Souza, Philipe G. C.
    Aidoo, Owusu F. F.
    Farnezi, Priscila K. B.
    Heve, William K. K.
    Junior, Paulo A. S.
    Picanco, Marcelo C. C.
    Ninsin, Kodwo D. D.
    Ablormeti, Fred K. K.
    Shah, Mohd Asif
    Siddiqui, Shahida Anusha
    Silva, Ricardo S. S.
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [35] Tamarixia radiata global distribution to current and future climate using the climate change experiment (CLIMEX) model
    Philipe G. C. Souza
    Owusu F. Aidoo
    Priscila K. B. Farnezi
    William K. Heve
    Paulo A. S. Júnior
    Marcelo C. Picanço
    Kodwo D. Ninsin
    Fred K. Ablormeti
    Mohd Asif Shah
    Shahida Anusha Siddiqui
    Ricardo S. Silva
    Scientific Reports, 13
  • [36] ASSESSING CLIMATE RISK AND CLIMATE CHANGE USING RAINFALL DATA - A CASE STUDY FROM ZAMBIA
    Stern, R. D.
    Cooper, P. J. M.
    EXPERIMENTAL AGRICULTURE, 2011, 47 (02) : 241 - 266
  • [37] Adaptation of vegetable farmers to climate change in the Parisian region: a participatory approach using climate data
    Touili, N.
    Aubry, C.
    Morel, K.
    XXXI INTERNATIONAL HORTICULTURAL CONGRESS, IHC2022: INTERNATIONAL SYMPOSIUM ON AGROECOLOGY AND SYSTEM APPROACH FOR SUSTAINABLE AND RESILIENT HORTICULTURAL PRODUCTION, 2022, 1355 : 463 - 467
  • [38] Stochastic Generation of Future Hydroclimate Using Temperature as a Climate Change Covariate
    Kiem, Anthony S.
    Kuczera, George
    Kozarovski, Pavel
    Zhang, Lanying
    Willgoose, Garry
    WATER RESOURCES RESEARCH, 2021, 57 (02)
  • [39] Assessment of climate change exposure of tourism in Hungary using observations and regional climate model data
    Kovacs, Attila
    Kiraly, Andrea
    HUNGARIAN GEOGRAPHICAL BULLETIN, 2021, 70 (03) : 215 - 231
  • [40] Using extant fishes to predict the future of freshwater fishes facing climate disruption
    Nelson, J. A.
    Thorarensen, H.
    INTEGRATIVE AND COMPARATIVE BIOLOGY, 2018, 58 : E163 - E163