IMPLICITLY RESTARTED GENERALIZED SECOND-ORDER ARNOLDI TYPE ALGORITHMS FOR THE QUADRATIC EIGENVALUE PROBLEM

被引:0
|
作者
Jia, Zhongxiao [1 ]
Sun, Yuquan [2 ,3 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
[2] Beihang Univ, LMIB, Beijing 100191, Peoples R China
[3] Beihang Univ, Sch Math & Syst Sci, Beijing 100191, Peoples R China
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2015年 / 19卷 / 01期
基金
美国国家科学基金会;
关键词
QEP; GSOAR procedure; GSOAR method; RGSOAR method; Ritz vector; Refined Ritz vector; Implicit restart; Exact shifts; Refined shifts; SMALLEST SINGULAR TRIPLETS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the generalized second-order Arnoldi (GSOAR) method, a generalization of the SOAR method proposed by Bai and Su [SIAM J. Matrix Anal. Appl., 26 (2005): 640-659.], and the Refined GSOAR (RGSOAR) method for the quadratic eigenvalue problem (QEP). The two methods use the GSOAR procedure to generate an orthonormal basis of a given generalized second-order Krylov subspace, and with such basis they project the QEP onto the subspace and compute the Ritz pairs and the refined Ritz pairs, respectively. We develop implicitly restarted GSOAR and RGSOAR algorithms, in which we propose certain exact and refined shifts for respective use within the two algorithms. Numerical experiments on real-world problems illustrate the efficiency of the restarted algorithms and the superiority of the restarted RGSOAR to the restarted GSOAR. The experiments also demonstrate that both IGSOAR and IRGSOAR generally perform much better than the implicitly restarted Arnoldi method applied to the corresponding linearization problems, in terms of the accuracy and the computational efficiency.
引用
收藏
页码:1 / 30
页数:30
相关论文
共 50 条
  • [1] SOAR: A second-order Arnoldi method for the solution of the quadratic eigenvalue problem
    Bai, ZJ
    Su, YF
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2005, 26 (03) : 640 - 659
  • [2] A variant of second-order Arnoldi method for solving the quadratic eigenvalue problem
    Zhou, Peng
    Wang, Xiang
    He, Ming
    Mao, Liang-Zhi
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2016, 20 (04) : 718 - 733
  • [3] Restarted generalized second-order krylov subspace methods for solving quadratic eigenvalue problems
    Zhou, Liping
    Bao, Liang
    Lin, Yiqin
    Wei, Yimin
    Wu, Qinghua
    World Academy of Science, Engineering and Technology, 2010, 67 : 429 - 436
  • [4] Restarted generalized second-order krylov subspace methods for solving quadratic eigenvalue problems
    Zhou, Liping
    Bao, Liang
    Lin, Yiqin
    Wei, Yimin
    Wu, Qinghua
    International Journal of Computational and Mathematical Sciences, 2010, 4 (03): : 148 - 155
  • [5] Implicitly Restarted Refined Generalised Arnoldi Method with Deflation for the Polynomial Eigenvalue Problem
    Wei, Wei
    Dai, Hua
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2018, 8 (01) : 82 - 99
  • [6] FAST INEXACT IMPLICITLY RESTARTED ARNOLDI METHOD FOR GENERALIZED EIGENVALUE PROBLEMS WITH SPECTRAL TRANSFORMATION
    Xue, Fei
    Elman, Howard C.
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2012, 33 (02) : 433 - 459
  • [7] A modified second-order Arnoldi method for solving the quadratic eigenvalue problems
    Wang, Xiang
    Tang, Xiao-Bin
    Mao, Liang-Zhi
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 73 (02) : 327 - 338
  • [8] A projection algorithm for partial eigenvalue assignment problem using implicitly restarted Arnoldi method
    Ramadan, Mohamed A.
    El-Sayed, Ehab A.
    JOURNAL OF VIBRATION AND CONTROL, 2013, 19 (03) : 367 - 375
  • [9] Apply implicitly restarted Arnoldi method to solving eigenvalue problem and reducing dimensionality in neutron diffusion
    Xiang Z.
    Chen Q.
    Zhao P.
    Zhang Q.
    He Jishu/Nuclear Techniques, 2024, 47 (02):
  • [10] THE SECOND-ORDER CONE QUADRATIC EIGENVALUE COMPLEMENTARITY PROBLEM
    Iusem, Alfredo N.
    Judice, Joaquim J.
    Sessa, Valentina
    Sherali, Hanif D.
    PACIFIC JOURNAL OF OPTIMIZATION, 2017, 13 (03): : 475 - 500