The geospatial data quality REST API for primary biodiversity data

被引:5
|
作者
Otegui, Javier [1 ]
Guralnick, Robert P. [1 ]
机构
[1] Univ Florida, Florida Museum Nat Hist, Gainesville, FL 32611 USA
基金
美国国家科学基金会;
关键词
D O I
10.1093/bioinformatics/btw057
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
A Summary: We present a REST web service to assess the geospatial quality of primary biodiversity data. It enables access to basic and advanced functions to detect completeness and consistency issues as well as general errors in the provided record or set of records. The API uses JSON for data interchange and efficient parallelization techniques for fast assessments of large datasets.
引用
收藏
页码:1755 / 1757
页数:3
相关论文
共 50 条
  • [21] GEOSPATIAL DATA QUALITY OF THE SERVIR CORS NETWORK
    Santos, J.
    Teodoro, R.
    Mira, N.
    Mendes, V. B.
    ISPRS GEOSPATIAL WEEK 2015, 2015, II-3 (W5): : 285 - 290
  • [22] Geospatial Open Data Usage and Metadata Quality
    Quarati, Alfonso
    De Martino, Monica
    Rosim, Sergio
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2021, 10 (01)
  • [23] Towards a data publishing framework for primary biodiversity data: challenges and potentials for the biodiversity informatics community
    Chavan, Vishwas S.
    Ingwersen, Peter
    BMC BIOINFORMATICS, 2009, 10 : S2
  • [24] Towards a data publishing framework for primary biodiversity data: challenges and potentials for the biodiversity informatics community
    Vishwas S Chavan
    Peter Ingwersen
    BMC Bioinformatics, 10
  • [25] QPredict: Using low quality volunteered geospatial data to evaluate high quality authority data
    Homburg, Timo
    Staab, Steffen
    Boochs, Frank
    ACM TRANSACTIONS ON SPATIAL ALGORITHMS AND SYSTEMS, 2025, 11 (01)
  • [26] A framework for publishing primary biodiversity data INTRODUCTION
    Roberts, Dave
    Moritz, Tom
    BMC BIOINFORMATICS, 2011, 12
  • [27] Crowdsourced geospatial data quality: challenges and future directions
    Basiri, Anahid
    Haklay, Muki
    Foody, Giles
    Mooney, Peter
    INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2019, 33 (08) : 1588 - 1593
  • [28] Methods and tools to improve data quality in biodiversity specimen occurrence data
    Veiga, A. K.
    Saraiva, A. M.
    Cartolano, E. A.
    EFITA/WCCA '11, 2011, : 471 - 480
  • [29] Data Quality Control in Biodiversity Informatics: The Case of Species Occurrence Data
    Veiga, A. K.
    Cartolano, E. A., Jr.
    Saraiva, A. M.
    IEEE LATIN AMERICA TRANSACTIONS, 2014, 12 (04) : 683 - 693
  • [30] Geospatial Big Data or Big Geospatial Data: A Bibliometric Review
    Ndu, Chidinma Godsgood
    Shoko, Moreblessings
    SOUTH AFRICAN JOURNAL OF GEOMATICS, 2024, 13 (01): : 158 - 171