Polynomial interpolation on the unit sphere

被引:15
|
作者
Xu, Y [1 ]
机构
[1] Univ Oregon, Dept Math, Eugene, OR 97403 USA
关键词
interpolation; spherical polynomials; unit sphere;
D O I
10.1137/S003614290139946X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The problem of interpolation at (n + 1)(2) points on the unit sphere S-2 by spherical polynomials of degree at most n is studied. Many sets of points that admit unique interpolation are given explicitly. The proof is based on a method of factorization of polynomials. A related problem of interpolation by trigonometric polynomials is also solved.
引用
收藏
页码:751 / 766
页数:16
相关论文
共 50 条
  • [41] On harmonic polynomial interpolation
    Zahariuta, V.
    [J]. COMPLEX ANALYSIS AND DYNAMICAL SYSTEMS III, 2008, 455 : 439 - 453
  • [42] Hermite interpolation on sphere
    Habib, Z
    Sakai, M
    [J]. Computer Graphics, Imaging and Vision: New Trends, 2005, : 416 - 421
  • [43] A representation of the interpolation polynomial
    Ivan, Mircea
    Neagos, Vicuta
    [J]. NUMERICAL ALGORITHMS, 2021, 88 (03) : 1215 - 1231
  • [44] Fractal polynomial interpolation
    Navascués, MA
    [J]. ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2005, 24 (02): : 401 - 418
  • [45] On a Hermite interpolation on the sphere
    Zhang, Ming
    Liang, Xue-Zhang
    [J]. APPLIED NUMERICAL MATHEMATICS, 2011, 61 (05) : 666 - 674
  • [46] INTERPOLATION ON THE SURFACE OF A SPHERE
    RENKA, RJ
    [J]. ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1984, 10 (04): : 437 - 439
  • [47] On the divergence of polynomial interpolation
    Jorba, A
    Tatjer, JC
    [J]. JOURNAL OF APPROXIMATION THEORY, 2003, 120 (01) : 85 - 110
  • [48] A representation of the interpolation polynomial
    Mircea Ivan
    Vicuta Neagos
    [J]. Numerical Algorithms, 2021, 88 : 1215 - 1231
  • [49] On the Hermite interpolation polynomial
    Pop, Ovidiu T.
    Barbosu, Dan
    [J]. ANNALS OF THE UNIVERSITY OF CRAIOVA-MATHEMATICS AND COMPUTER SCIENCE SERIES, 2010, 37 (01): : 104 - 109
  • [50] On the trivariate polynomial interpolation
    Safak, Suleyman
    [J]. WSEAS Transactions on Mathematics, 2012, 11 (08) : 738 - 746