Internal low-velocity impact damage prediction in CFRP laminates using surface profiles and machine learning

被引:31
|
作者
Hasebe, Saki [1 ]
Higuchi, Ryo [1 ]
Yokozeki, Tomohiro [1 ]
Takeda, Shin-ichi [2 ]
机构
[1] Univ Tokyo, Dept Aeronaut & Astronaut, Bunkyo Ku, Tokyo 1138656, Japan
[2] Japan Aerosp Explorat Agcy JAXA, Aeronaut Technol Directorate, Mitaka, Tokyo 1810015, Japan
关键词
A; Carbon fiber; Laminates; D; Non-destructive testing; COMPOSITES; DIAMETER; PANELS;
D O I
10.1016/j.compositesb.2022.109844
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Aircraft operators must maintain the safety of aircraft structures. In order to aim for an easier maintenance of impact damage on the composite structures, the possibility of inferring low-velocity impact (LVI) information in CFRP laminates from the surface damage profiles is verified. This study conducts several low-velocity impact tests considering three factors (stacking sequence, impactor shape, and impact energy), inducing barely visible impact damage on specimens. This is followed by surface profile and internal damage measurements. Subsequently, original features that could contribute to inferring impact information were created from the surface profile. After feature engineering, the predictability of impactor shape, delamination area, and delamination length was confirmed using three machine learning models. The results indicated that the models could infer approximately 80 % of them correctly using dent depth and the volume of indentation. The proposed model enables us to infer non-visible impact information from visible one generally without a great deal of inspections.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Progressive damage modelling and fatigue life prediction of Plain-weave composite laminates with Low-velocity impact damage
    Cheng, Zheng-Qiang
    Tan, Wei
    Xiong, Jun-Jiang
    COMPOSITE STRUCTURES, 2021, 273
  • [42] An insight into the low-velocity impact behavior of patch-repaired CFRP laminates using numerical and experimental approaches
    Tie, Ying
    Hou, Yuliang
    Li, Cheng
    Zhou, Xihui
    Sapanathan, Thaneshan
    Rachik, Mohamed
    COMPOSITE STRUCTURES, 2018, 190 : 179 - 188
  • [43] Nonlinear progressive damage model for composite laminates used for low-velocity impact
    Wei Guo
    Pu Xue
    Jun Yang
    Applied Mathematics and Mechanics, 2013, 34 : 1145 - 1154
  • [44] Nonlinear progressive damage model for composite laminates used for low-velocity impact
    Guo, Wei
    Xue, Pu
    Yang, Jun
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2013, 34 (09) : 1145 - 1154
  • [45] LOW-VELOCITY IMPACT DAMAGE IN GRAPHITE-FIBER REINFORCED EPOXY LAMINATES
    RHODES, MD
    WILLIAMS, JG
    STARNES, JH
    POLYMER COMPOSITES, 1981, 2 (01) : 36 - 44
  • [46] Influence of various damage mechanisms on the low-velocity impact response of composite laminates
    Zou, Xionghui
    Gao, Weicheng
    Xi, Wei
    POLYMER COMPOSITES, 2024, 45 (01) : 722 - 737
  • [47] Prediction of low velocity impact damage in carbon/epoxy laminates
    Xu, S.
    Chen, P. H.
    7TH ASIAN-PACIFIC CONFERENCE ON AEROSPACE TECHNOLOGY AND SCIENCE, APCATS 2013, 2013, 67 : 489 - 496
  • [48] Experimental investigation of the double impact position effect on the mechanical behavior of low-velocity impact in CFRP laminates
    Zhou, Jianwu
    Liao, Binbin
    Shi, Yaoyao
    Ning, Liqun
    Zuo, Yangjie
    Jia, Liyong
    COMPOSITES PART B-ENGINEERING, 2020, 193
  • [49] Low-velocity impact behaviors of repaired CFRP laminates: Effect of impact location and external patch configurations
    Hou, Yuliang
    Tie, Ying
    Li, Cheng
    Sapanathan, Thaneshan
    Rachik, Mohamed
    COMPOSITES PART B-ENGINEERING, 2019, 163 : 669 - 680
  • [50] A study on low-velocity impact damage of Z-pin reinforced laminates
    Jin Teng
    Zhuo Zhuang
    Bintai Li
    Journal of Mechanical Science and Technology, 2007, 21 : 2125 - 2132