Textual Entailment by Generality

被引:2
|
作者
Pais, Sebastiao [1 ]
Dias, Gael [1 ,2 ]
Wegrzyn-Wolska, Katarzyna [3 ]
Mahl, Robert [4 ]
Jouvelot, Pierre [4 ]
机构
[1] HULTIG Univ Beira Interior, Covilha, Portugal
[2] Univ Caen Basse Normandie, DLU, GREYC, F-14032 Caen, France
[3] Ecole Super dIngenieurs Informat, Genie des Telecommun, SITR, Villejuif, France
[4] Ecole Natl Superieure des Mines de Paris, CRI, Paris, France
关键词
Asymmetric Association Measures; Informative Asymmetric Measure; Textual Entailment;
D O I
10.1016/j.sbspro.2011.10.606
中图分类号
H0 [语言学];
学科分类号
030303 ; 0501 ; 050102 ;
摘要
Textual Entailment consists in determining if an entailment relation exists between two texts. In this paper, we present an Informative Asymmetric Measure called the Asymmetric InfoSimba (AIS), which we combine with different asym-metric association measures to recognize the specific case of Textual Entailment by Generality. In particular, the AIS proposes an unsupervised, language-independent, threshold free solution. This new measure is tested against the first Recognizing Textual Entailment dataset for an exhaustive number of asymmetric association measures and shows that the combination of the AIS with the Braun-Blanket steadily improves results against competitive measures such as the one proposed by [1]. (C) 2011 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of PACLING Organizing Committee.
引用
收藏
页码:258 / 266
页数:9
相关论文
共 50 条
  • [41] Building a Greek corpus for Textual Entailment
    Marzelou, Evi
    Zourari, Maria
    Giouli, Voula
    Piperidis, Stelios
    [J]. SIXTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, LREC 2008, 2008, : 1680 - 1686
  • [42] Recognizing textual entailment via atomic propositions
    Akhmatova, Elena
    Molla, Diego
    [J]. MACHINE LEARNING CHALLENGES: EVALUATING PREDICTIVE UNCERTAINTY VISUAL OBJECT CLASSIFICATION AND RECOGNIZING TEXTUAL ENTAILMENT, 2006, 3944 : 385 - 403
  • [43] Learning textual entailment on a distance feature space
    Pazienza, Maria Teresa
    Pennacchiotti, Marco
    Zanzotto, Fabio Massimo
    [J]. MACHINE LEARNING CHALLENGES: EVALUATING PREDICTIVE UNCERTAINTY VISUAL OBJECT CLASSIFICATION AND RECOGNIZING TEXTUAL ENTAILMENT, 2006, 3944 : 240 - 260
  • [44] Compositional Evaluation on Japanese Textual Entailment and Similarity
    Yanaka, Hitomi
    Mineshima, Koji
    [J]. arXiv, 2022,
  • [45] Techniques for recognizing textual entailment and semantic equivalence
    Herrera, Jesus
    Penas, Anselmo
    Verdejo, Felisa
    [J]. CURRENT TOPICS IN ARTIFICIAL INTELLIGENCE, 2006, 4177 : 419 - 428
  • [46] Exploring Prompting Approaches in Legal Textual Entailment
    Onur Bilgin
    Logan Fields
    Antonio Laverghetta
    Zaid Marji
    Animesh Nighojkar
    Stephen Steinle
    John Licato
    [J]. The Review of Socionetwork Strategies, 2024, 18 : 75 - 100
  • [47] Design and realization of a modular architecture for textual entailment
    Pado, Sebastian
    Noh, Tae-Gil
    Stern, Asher
    Wang, Rui
    Zanoli, Roberto
    [J]. NATURAL LANGUAGE ENGINEERING, 2015, 21 (02) : 167 - 200
  • [48] Paraphrase Identification Using Textual Entailment Recognition
    Seethamol, S.
    Manju, K.
    [J]. 2017 INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING, INSTRUMENTATION AND CONTROL TECHNOLOGIES (ICICICT), 2017, : 1071 - 1074
  • [49] Exploring Prompting Approaches in Legal Textual Entailment
    Bilgin, Onur
    Fields, Logan
    Laverghetta Jr, Antonio
    Marji, Zaid
    Nighojkar, Animesh
    Steinle, Stephen
    Licato, John
    [J]. REVIEW OF SOCIONETWORK STRATEGIES, 2024, 18 (01): : 75 - 100
  • [50] Word Segmentation Refinement by Wikipedia for Textual Entailment
    Lin, Chuan-Jie
    Tu, Yu-Cheng
    [J]. 2014 IEEE 15TH INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATION (IRI), 2014, : 600 - 606