Interval estimation for a binomial proportion - Comment - Rejoinder

被引:2386
|
作者
Brown, LD
Cai, TT
DasGupta, A
Agresti, A
Coull, BA
Casella, G
Corcoran, C
Mehta, C
Ghosh, M
Santner, TJ
Brown, LD
Cai, TT
DasGupta, A
机构
[1] Univ Penn, Wharton Sch, Philadelphia, PA 19104 USA
[2] Purdue Univ, Dept Stat, W Lafayette, IN 47907 USA
关键词
Bayes; binomial distribution; confidence intervals; coverage probability; Edgeworth expansion; expected length; Jeffreys prior; normal approximation; posterior;
D O I
10.1214/ss/1009213286
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We revisit the problem of interval estimation of a binomial proportion. The erratic behavior of the coverage probability of the standard Wald confidence interval has previously been remarked on in the literature (Blyth and Still, Agresti and Coull, Santner and others). We begin by showing that the chaotic coverage properties of the Wald interval are far more persistent than is appreciated. Furthermore, common textbook prescriptions regarding its safety are misleading and defective in several respects and cannot be trusted. This leads us to consideration of alternative intervals. A number of natural alternatives are presented, each with its motivation and context. Each interval is examined for its coverage probability and its length. Based on this analysis, we recommend the Wilson interval or the equal-tailed Jeffreys prior interval for small n and the interval suggested in Agresti and Coull for larger n. We also provide an additional frequentist justification for use of the Jeffreys interval.
引用
收藏
页码:101 / 133
页数:33
相关论文
共 50 条
  • [11] A generalized score confidence interval for a binomial proportion
    Guan, Yu
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2012, 142 (04) : 785 - 793
  • [12] INTERVAL ESTIMATORS FOR A BINOMIAL PROPORTION: COMPARISON OF TWENTY METHODS
    Pires, Ana M.
    Amado, Conceicao
    REVSTAT-STATISTICAL JOURNAL, 2008, 6 (02) : 165 - +
  • [13] USING ADJUSTED WALD CONFIDENCE INTERVAL FOR A BINOMIAL PROPORTION
    Almendra-Arao, Felix
    Reyes-Cervantes, Hortensia
    Morales-Cortes, Marcos
    del Rocio Reyes-Reyes, Maria
    Catherin Diaz-Arias, Marian
    JP JOURNAL OF BIOSTATISTICS, 2020, 17 (02) : 415 - 422
  • [14] An improved score interval with a modified midpoint for a binomial proportion
    Yu, Wei
    Guo, Xu
    Xu, Wangli
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2014, 84 (05) : 1022 - 1038
  • [15] A generalized Agresti–Coull type confidence interval for a binomial proportion
    Junsik Kim
    Woncheol Jang
    Journal of the Korean Statistical Society, 2022, 51 : 356 - 377
  • [16] INTERVAL ESTIMATION FOR THE PARAMETER OF A BINOMIAL DISTRIBUTION
    CLUNIESROSS, CW
    BIOMETRIKA, 1958, 45 (1-2) : 275 - 279
  • [17] Modified Clopper-Pearson Confidence Interval for Binomial Proportion
    Habtzghi, Desale
    Midha, Chand K.
    Das, Ashish
    JOURNAL OF STATISTICAL THEORY AND APPLICATIONS, 2014, 13 (04): : 296 - 310
  • [18] Modified Clopper-Pearson Confidence Interval for Binomial Proportion
    Desale Habtzghi
    Chand K. Midha
    Ashish Das
    Journal of Statistical Theory and Applications, 2014, 13 (4): : 296 - 310
  • [19] Improving interval estimation of binomial proportions
    Zhou, X. H.
    Li, C. M.
    Yang, Z.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2008, 366 (1874): : 2405 - 2418
  • [20] A MULTISCALE VARIANCE STABILIZATION FOR BINOMIAL SEQUENCE PROPORTION ESTIMATION
    Nunes, Matthew A.
    Nason, Guy P.
    STATISTICA SINICA, 2009, 19 (04) : 1491 - 1510