Iterative Smoother-Based Variance Estimation

被引:8
|
作者
Einicke, G. A. [1 ]
Falco, G. [2 ]
Dunn, M. T. [1 ]
Reid, D. C. [1 ]
机构
[1] CSIRO, Pullenvale 4069, Australia
[2] ISMB, I-10138 Turin, Italy
关键词
EM algorithms; Kalman filtering; smoothing; EM ALGORITHM; NAVIGATION;
D O I
10.1109/LSP.2012.2190278
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The minimum-variance smoother solution for input estimation is described and it is shown that the resulting estimates are unbiased. The smoothed input and state estimates are used to iteratively identify unknown process noise variances. The use of smoothed estimates, as opposed to filtered estimates, leads to improved approximate Cramer-Rao lower bounds for the unknown parameters. It is also shown that the sequence of iterates are monotonic and asymptotically approach the actual values under prescribed conditions. A nonlinear mining navigation application is described in which unknown parameters are estimated.
引用
收藏
页码:275 / 278
页数:4
相关论文
共 50 条
  • [31] EM-based iterative receiver for space-time coded modulation with noise variance estimation.
    Baranski, Z
    Haimovich, AM
    Garcia-Frias, J
    GLOBECOM'02: IEEE GLOBAL TELECOMMUNICATIONS CONFERENCE, VOLS 1-3, CONFERENCE RECORDS: THE WORLD CONVERGES, 2002, : 355 - 359
  • [32] Comparison of Kalman Smoother to Wiener Smoother in Practical OFDM Channel Estimation
    Hagiwara, Junichiro
    Nishimura, Toshihiko
    Ohgane, Takeo
    Ogawa, Yasutaka
    2015 21ST ASIA-PACIFIC CONFERENCE ON COMMUNICATIONS (APCC), 2015, : 454 - 459
  • [33] The error variance of the optimal linear smoother and maximum-variance fractional pole models
    Georgiou, Tryphon T.
    PROCEEDINGS OF THE 45TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2006, : 1685 - 1691
  • [34] Variance estimation based on invariance principles
    Steinebach, J
    STATISTICS, 1995, 27 (1-2) : 15 - 25
  • [35] Iterative algorithm for matched-filter design in minimum variance spectral estimation
    Peng, Yu
    Gao, Zhifeng
    Peng, Xiyuan
    Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument, 2013, 34 (07): : 1479 - 1484
  • [36] Applying a Kalman Smoother to Synchrophasor Estimation
    Fontanelli, Daniele
    Petri, Dario
    2015 AEIT INTERNATIONAL ANNUAL CONFERENCE (AEIT), 2015,
  • [37] Simultaneous Estimation of a Contaminant Source and Hydraulic Conductivity Field by Combining an Iterative Ensemble Smoother and Sequential Gaussian Simulation
    Jiang, Simin
    Zhang, Ruicheng
    Liu, Jinbing
    Xia, Xuemin
    Li, Xianwen
    Zheng, Maohui
    WATER, 2022, 14 (05)
  • [38] Adaptive Lag Smoother for State Estimation
    Poddar, Shashi
    Crassidis, John L.
    SENSORS, 2022, 22 (14)
  • [39] Efficient Non-Iterative and Nonparametric Estimation of Heterogeneity Variance for the Standardized Mortality Ratio
    Dankmar Böhning
    Uwe Malzahn
    Jesus Sarol
    Sasivimol Rattanasiri
    Annibale Biggeri
    Annals of the Institute of Statistical Mathematics, 2002, 54 : 827 - 839
  • [40] An Iterative Ensemble Kalman Smoother in Presence of Additive Model Error
    Fillion, Anthony
    Bocquet, Marc
    Gratton, Serge
    Gurol, Selime
    Sakov, Pavel
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2020, 8 (01): : 198 - 228