A Poincare type inequality for one-dimensional multiprojective foliations

被引:6
|
作者
Correa, Mauricio, Jr. [1 ]
Soares, Marcio G. [2 ]
机构
[1] Univ Fed Vicosa, Dept Matemat, BR-36571000 Vicosa, MG, Brazil
[2] Univ Fed Minas Gerais, Dept Matemat, BR-31270901 Belo Horizonte, MG, Brazil
来源
关键词
holomorphic foliations; Riccati foliations; Poincare's inequality;
D O I
10.1007/s00574-011-0026-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study one-dimensional holomorphic foliations on products of complex projective spaces and present results giving the number of singularities, counting multiplicities, of a generic foliation, a criterion for a foliation to be Riccati and a Poincare type inequality, relating degrees of foliations to degrees of hypersurfaces which are invariant by them.
引用
收藏
页码:485 / 503
页数:19
相关论文
共 50 条
  • [31] On the resolution of singularities of one-dimensional foliations on three-manifolds
    Rebelo, Julio C.
    Reis, H.
    RUSSIAN MATHEMATICAL SURVEYS, 2021, 76 (02) : 291 - 355
  • [32] On a Poincare type inequality
    Planchon, F
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (01): : 21 - 23
  • [33] A length inequality for one-dimensional local rings
    Delfino, D
    Leer, L
    Muntean, R
    COMMUNICATIONS IN ALGEBRA, 2000, 28 (05) : 2555 - 2564
  • [34] ON THE BEST CONSTANT OF THE ONE-DIMENSIONAL BLISS INEQUALITY
    Biswas, Mrinmay
    HOUSTON JOURNAL OF MATHEMATICS, 2020, 46 (01): : 189 - 200
  • [35] Solution of one-dimensional Dirac equation via Poincare map
    Bahlouli, Hocine
    Choubabi, El Bouazzaoui
    Jellal, Ahmed
    EPL, 2011, 95 (01)
  • [36] Poincare cycle of an Ehrenfest multiurn model in a one-dimensional ring
    Kao, YM
    PHYSICAL REVIEW E, 2004, 69 (02): : 027103 - 1
  • [37] THE POINCARE-CARTAN FORMS OF ONE-DIMENSIONAL VARIATIONAL INTEGRALS
    Chrastinova, Veronika
    Tryhuk, Vaclav
    MATHEMATICA SLOVACA, 2020, 70 (06) : 1381 - 1412
  • [38] Computing one-dimensional global manifolds of Poincare maps by continuation
    England, JP
    Krauskopf, B
    Osinga, HM
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2005, 4 (04): : 1008 - 1041
  • [39] ONE-DIMENSIONAL LIE FOLIATIONS WITH GENERIC SINGULARITIES IN COMPLEX DIMENSION THREE
    Mafra, Albeta
    Scardua, Bruno
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2011, 91 (01) : 13 - 28
  • [40] ON ALGEBRAIC-SETS INVARIANT BY ONE-DIMENSIONAL FOLIATIONS ON CP(3)
    SOARES, MG
    ANNALES DE L INSTITUT FOURIER, 1993, 43 (01) : 143 - 162