ANDERSON t-MODULES WITH THIN t-ADIC GALOIS REPRESENTATIONS

被引:0
|
作者
Maurischat, Andreas [1 ]
机构
[1] Rhein Westfal TH Aachen, FH Aachen Univ Appl Sci, Aachen, Germany
关键词
Galois representation; t-module; t-motive; prolongations; Mumford-Tate conjecture; ALGEBRAIC INDEPENDENCE; MOTIVES;
D O I
10.1090/proc/15815
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Pink has given a qualitative answer to the Mumford-Tate conjecture for Drinfeld modules in the 90s. He showed that the image of the p-adic Galois representation is p-adically open in the motivic Galois group for any prime p. In contrast to this result, we provide a family of uniformizable Anderson t-modules for which the Galois representations of their t-adic Tate modules are "far from" having t-adically open image in their motivic Galois groups. Nevertheless, the image is still Zariski-dense in the motivic Galois group which is in accordance to the Mumford-Tate conjecture. For the proof, we explicitly determine the motivic Galois group as well as the Galois representation for these t-modules.
引用
收藏
页码:927 / 940
页数:14
相关论文
共 41 条
  • [11] Periods of t-modules as special values
    Maurischat, Andreas
    JOURNAL OF NUMBER THEORY, 2022, 232 : 177 - 203
  • [12] T-adic exponential sums over affinoids
    Schmidt, Matthew
    JOURNAL OF NUMBER THEORY, 2023, 242 : 409 - 435
  • [13] Totally T-adic functions of small height
    Faber, Xander
    Petsche, Clayton
    RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2020, 31 (04) : 699 - 732
  • [14] Generic twisted T-adic exponential sums of binomials
    ChunLei Liu
    ChuanZe Niu
    Science China Mathematics, 2011, 54 : 865 - 875
  • [15] ON t-ADIC LITTLEWOOD CONJECTURE FOR CERTAIN INFINITE PRODUCTS
    Badziahin, D.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 149 (11) : 4527 - 4540
  • [16] RIEMANN HYPOTHESIS FOR THE GOSS t-ADIC ZETA FUNCTION
    Diaz-Vargas, Javier
    Polanco-Chi, Enrique
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2016, 46 (02) : 435 - 442
  • [17] Generic T-adic exponential sums in one variable
    Liu, Chunlei
    Liu, Wenxin
    Niu, Chnanze
    JOURNAL OF NUMBER THEORY, 2016, 166 : 276 - 297
  • [18] T-adic exponential sums over finite fields
    Liu, Chunlei
    Wan, Daqing
    ALGEBRA & NUMBER THEORY, 2009, 3 (05) : 489 - 509
  • [19] On special L-values of t-modules
    Angles, Bruno
    Tuan Ngo Dac
    Ribeiro, Floric Tavares
    ADVANCES IN MATHEMATICS, 2020, 372
  • [20] T-modules and Pila-Wilkie estimates
    Demangos, Luca
    JOURNAL OF NUMBER THEORY, 2015, 154 : 201 - 277