Modeling and identification of a simple fractional-order circuit via discrete-time Laguerre approximation to the GL fractional-order derivative

被引:0
|
作者
Stanislawski, Rafal [1 ]
Czuczwara, Wojciech [1 ]
Latawiec, Krzysztof J. [1 ]
Lukaniszyn, Marian [1 ]
Kopka, Ryszard [1 ]
机构
[1] Opole Univ Technol, Dept Elect Control & Comp Engn, Ul Proszkowska 76, PL-45758 Opole, Poland
关键词
STABILITY; SYSTEM;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents a new method for modeling and identification of a simple electric circuit described by fractional-order differential equation. The Grunwald-Letnikov fractionalorder derivative is approximated by its effective discrete-time model based on Laguerre filters, giving rise to a new discrete-time integer-order equation modeling the considered electric circuit. High accuracy of modeling and parameter estimation for the circuit, under moderate computational effort, is verified on a real-life experimental data.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Numerical analysis of a fractional-order chaotic system based on conformable fractional-order derivative
    Shaobo He
    Kehui Sun
    Xiaoyong Mei
    Bo Yan
    Siwei Xu
    The European Physical Journal Plus, 132
  • [42] Discrete fractional-order Halanay inequality with mixed time delays and applications in discrete fractional-order neural network systems
    Liu, Xiang
    Yu, Yongguang
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2025,
  • [43] On Class of Fractional-Order Chaotic or Hyperchaotic Systems in the Context of the Caputo Fractional-Order Derivative
    Sene, Ndolane
    Ndiaye, Ameth
    JOURNAL OF MATHEMATICS, 2020, 2020
  • [44] Synchronization of Chaotic Fractional-order Systems via Fractional-Order Adaptive Controller
    Fayazi, Ali
    EMERGING SYSTEMS FOR MATERIALS, MECHANICS AND MANUFACTURING, 2012, 109 : 333 - 339
  • [45] Fractional-order Iterative Learning Control and Identification for Fractional-order Hammerstein System
    Li, Yan
    Zhai, Lun
    Chen, YangQuan
    Ahn, Hyo-Sung
    2014 11TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2014, : 840 - 845
  • [46] New results for the stability of fractional-order discrete-time neural networks
    Hioual, Amel
    Oussaeif, Taki-Eddine
    Ouannas, Adel
    Grassi, Giuseppe
    Batiha, Iqbal M.
    Momani, Shaher
    ALEXANDRIA ENGINEERING JOURNAL, 2022, 61 (12) : 10359 - 10369
  • [47] OPTIMAL CONTROL OF THE DISCRETE-TIME FRACTIONAL-ORDER CUCKER SMALE MODEL
    Malinowska, Agnieszka B.
    Odzijewicz, Tatiana
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2018, 23 (01): : 347 - 357
  • [48] The Second Form of the Variable-, Fractional-Order Discrete-Time Integrator
    Ostalczyk, Piotr
    Mozyrska, Dorota
    2016 21ST INTERNATIONAL CONFERENCE ON METHODS AND MODELS IN AUTOMATION AND ROBOTICS (MMAR), 2016, : 859 - 864
  • [49] A New Reduced-Order Implementation of Discrete-Time Fractional-Order PID Controller
    Stanislawski, Rafal
    Rydel, Marek
    Li, Zhixiong
    IEEE ACCESS, 2022, 10 : 17417 - 17429
  • [50] Robust Model Predictive Control for Discrete-time Fractional-order Systems
    Sopasakis, Pantelis
    Ntouskas, Sotirios
    Sarimveis, Haralambos
    2015 23RD MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION (MED), 2015, : 384 - 389