Modeling and identification of a simple fractional-order circuit via discrete-time Laguerre approximation to the GL fractional-order derivative

被引:0
|
作者
Stanislawski, Rafal [1 ]
Czuczwara, Wojciech [1 ]
Latawiec, Krzysztof J. [1 ]
Lukaniszyn, Marian [1 ]
Kopka, Ryszard [1 ]
机构
[1] Opole Univ Technol, Dept Elect Control & Comp Engn, Ul Proszkowska 76, PL-45758 Opole, Poland
关键词
STABILITY; SYSTEM;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents a new method for modeling and identification of a simple electric circuit described by fractional-order differential equation. The Grunwald-Letnikov fractionalorder derivative is approximated by its effective discrete-time model based on Laguerre filters, giving rise to a new discrete-time integer-order equation modeling the considered electric circuit. High accuracy of modeling and parameter estimation for the circuit, under moderate computational effort, is verified on a real-life experimental data.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Modeling and Identification of a Fractional-Order Discrete-Time Laguerre-Hammerstein System
    Stanislawski, Rafal
    Galek, Marcin
    Latawiec, Krzysztof J.
    Lukaniszyn, Marian
    PROGRESS IN SYSTEMS ENGINEERING, 2015, 366 : 77 - 82
  • [2] Modeling and identification of a fractional-order discrete-time SISO Laguerre-Wiener system
    Stanislawski, Rafal
    Latawiec, Krzysztof J.
    Galek, Marcin
    Lukaniszyn, Marian
    2014 19TH INTERNATIONAL CONFERENCE ON METHODS AND MODELS IN AUTOMATION AND ROBOTICS (MMAR), 2014, : 165 - 168
  • [3] Predictive control of linear fractional-order systems based on discrete-time fractional-order Laguerre filters
    Stanislawski, Rafal
    Latawiec, Krzysztof J.
    Rydel, Marek
    Lukaniszyn, Marian
    Galek, Marcin
    2018 23RD INTERNATIONAL CONFERENCE ON METHODS & MODELS IN AUTOMATION & ROBOTICS (MMAR), 2018, : 110 - 113
  • [4] Fractional-Order Discrete-Time Laguerre Filters: A New Tool for Modeling and Stability Analysis of Fractional-Order LTI SISO Systems
    Stanislawski, Rafal
    Latawiec, Krzysztof J.
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2016, 2016
  • [5] Fractional-order derivative approximations in discrete-time control systems
    Machado, J.A.Tenreiro
    Systems Analysis Modelling Simulation, 1999, 34 (04): : 419 - 434
  • [6] Modeling and Identification of Fractional-Order Discrete-Time Laguerre-Based Feedback-Nonlinear Systems
    Stanislawski, Rafal
    Latawiec, Krzysztof J.
    Galek, Marcin
    Lukaniszyn, Marian
    ADVANCES IN MODELLING AND CONTROL OF NON-INTEGER ORDER SYSTEMS, 2015, 320 : 101 - 112
  • [7] DISCRETE-TIME REALIZATION OF FRACTIONAL-ORDER PROPORTIONAL INTEGRAL CONTROLLER FOR A CLASS OF FRACTIONAL-ORDER SYSTEM
    Swarnakar, Jaydeep
    NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2022, 12 (02): : 309 - 320
  • [8] Chaotic Control in Fractional-Order Discrete-Time Systems
    Ouannas, Adel
    Grassi, Giuseppe
    Azar, Ahmad Taher
    Khennaouia, Amina Aicha
    Viet-Thanh Pham
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT SYSTEMS AND INFORMATICS 2019, 2020, 1058 : 207 - 217
  • [9] Fundamental properties of the fractional-order discrete-time integrator
    Ostalczyk, P
    SIGNAL PROCESSING, 2003, 83 (11) : 2367 - 2376
  • [10] On Learning Discrete-Time Fractional-Order Dynamical Systems
    Chatterjee, Sarthak
    Pequito, Sergio
    2022 AMERICAN CONTROL CONFERENCE, ACC, 2022, : 4335 - 4340