DNA damage tolerance pathway involving DNA polymerase ι and the tumor suppressor p53 regulates DNA replication fork progression

被引:72
|
作者
Hamppa, Stephanie [1 ]
Kiesslinga, Tina [1 ]
Buechlea, Kerstin [1 ]
Mansilla, Sabrina F. [2 ]
Thomalec, Juergen [3 ]
Rall, Melanie [1 ]
Ahn, Jinwoo [4 ,7 ]
Pospiech, Helmut [5 ,6 ]
Gottifredi, Vanesa [2 ]
Wiesmueller, Lisa [1 ]
机构
[1] Univ Ulm, Dept Obstet & Gynecol, D-89075 Ulm, Germany
[2] Natl Sci & Tech Res Council, Fdn Inst Leloir Inst Invest Bioquim Bueno Aires, Cell Cycle & Genom Stabil Lab, C1405BWE, Buenos Aires, DF, Argentina
[3] Univ Duisburg Essen, Sch Med, Inst Cell Biol Canc Res, D-45122 Essen, Germany
[4] Columbia Univ, Dept Biol Sci, New York, NY 10027 USA
[5] Leibniz Inst Aging Fritz Lipmann Inst, Res Grp Biochem, D-07745 Jena, Germany
[6] Univ Oulu, Fac Biochem & Mol Med, FIN-90014 Oulu, Finland
[7] Univ Pittsburgh, Dept Biol Struct, Pittsburgh, PA 15260 USA
关键词
DNA damage bypass; DNA polymerase idling; nascent DNA elongation; polymerase iota; p53; MODULATES HOMOLOGOUS RECOMBINATION; STRAND BREAK REPAIR; MITOMYCIN-C; EXONUCLEASE ACTIVITY; GENOME STABILITY; MUTATION LOAD; HUMAN-CELLS; HUMAN HLTF; S-PHASE; PROTEIN;
D O I
10.1073/pnas.1605828113
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
DNA damage tolerance facilitates the progression of replication forks that have encountered obstacles on the template strands. It involves either translesion DNA synthesis initiated by proliferating cell nuclear antigen monoubiquitination or less well-characterized fork reversal and template switch mechanisms. Herein, we characterize a novel tolerance pathway requiring the tumor suppressor p53, the translesion polymerase iota (POL iota), the ubiquitin ligase Rad5-related helicase-like transcription factor ( HLTF), and the SWI/SNF catalytic subunit (SNF2) translocase zinc finger ran-binding domain containing 3 (ZRANB3). This novel p53 activity is lost in the exonuclease-deficient but transcriptionally active p53(H115N) mutant. Wild-type p53, but not p53( H115N), associates with POL iota in vivo. Strikingly, the concerted action of p53 and POL iota decelerates nascent DNA elongation and promotes HLTF/ZRANB3-dependent recombination during unperturbed DNA replication. Particularly after cross-linkerinduced replication stress, p53 and POL iota also act together to promote meiotic recombination enzyme 11 (MRE11)-dependent accumulation of (phospho-)replication protein A (RPA)-coated ssDNA. These results implicate a direct role of p53 in the processing of replication forks encountering obstacles on the template strand. Our findings define an unprecedented function of p53 and POL iota in the DNA damage response to endogenous or exogenous replication stress.
引用
收藏
页码:E4311 / E4319
页数:9
相关论文
共 50 条
  • [41] The DNA damage sensor ATM kinase interacts with the p53 mRNA and guides the DNA damage response pathway
    Karakostis, Konstantinos
    Malbert-Colas, Laurence
    Thermou, Aikaterini
    Vojtesek, Borek
    Fahraeus, Robin
    MOLECULAR CANCER, 2024, 23 (01)
  • [42] Mutation of DNA primase causes extensive apoptosis of retinal neurons through the activation of DNA damage checkpoint and tumor suppressor p53
    Yamaguchi, Masahiro
    Fujimori-Tonou, Noriko
    Yoshimura, Yukihiro
    Kishi, Tsutomu
    Okamoto, Hitoshi
    Masai, Ichiro
    DEVELOPMENT, 2008, 135 (07): : 1247 - 1257
  • [43] ROLE OF THE P53 TUMOR-SUPPRESSOR GENE IN THE CELLULAR-RESPONSE TO DNA-DAMAGE
    HUANG, LC
    WAHL, GM
    JOURNAL OF CELLULAR BIOCHEMISTRY, 1995, : 344 - 344
  • [44] INVOLVEMENT OF THE P53 TUMOR-SUPPRESSOR IN REPAIR OF UV-TYPE DNA-DAMAGE
    SMITH, ML
    CHEN, IT
    ZHAN, QM
    OCONNOR, PM
    FORNACE, AJ
    ONCOGENE, 1995, 10 (06) : 1053 - 1059
  • [45] Phosphorylation of murine p53 at Ser-18 regulates the p53 responses to DNA damage
    Chao, C
    Saito, S
    Anderson, CW
    Appella, E
    Xu, Y
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (22) : 11936 - 11941
  • [46] Tumor suppressor p53: from engaging DNA to target gene regulation
    Sammons, Morgan A.
    Nguyen, Thuy-Ai T.
    McDade, Simon S.
    Fischer, Martin
    NUCLEIC ACIDS RESEARCH, 2020, 48 (16) : 8848 - 8869
  • [47] Influence of anticancer drugs on interactions of tumor suppressor protein p53 with DNA
    Pivonkova, H
    Nemcova, K
    Brazdova, M
    Kasparkova, J
    Brabec, V
    Fojta, M
    FEBS JOURNAL, 2005, 272 : 562 - 562
  • [48] Cognate DNA Stabilizes the Tumor Suppressor p53 and Prevents Misfolding and Aggregation
    Ishimaru, Daniella
    Ano Bom, Ana Paula D.
    Lima, Luis Mauricio T. R.
    Quesado, Pablo A.
    Oyama, Marcos F. C.
    de Moura Gallo, Claudia V.
    Cordeiro, Yraima
    Silva, Jerson L.
    BIOCHEMISTRY, 2009, 48 (26) : 6126 - 6135
  • [49] DNA-BINDING PROPERTIES OF THE P53 TUMOR-SUPPRESSOR PROTEIN
    PRIVES, C
    BARGONETTI, J
    FARMER, G
    FERRARI, E
    FRIEDLANDER, P
    WANG, Y
    JAYARAMAN, L
    PAVLETICH, N
    HUBSCHER, U
    COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY, 1994, 59 : 207 - 213
  • [50] The MYST family histone acetyltransferase Hbo1 and tumor suppressor p53 in DNA replication licensing
    Smith, MM
    Iizuka, M
    Sarmento, O
    FASEB JOURNAL, 2006, 20 (04): : A34 - A34