A review on object pose recovery: From 3D bounding box detectors to full 6D pose estimators

被引:66
|
作者
Sahin, Caner [1 ]
Garcia-Hernando, Guillermo [1 ]
Sock, Juil [1 ]
Kim, Tae-Kyun [1 ]
机构
[1] Imperial Coll London, London, England
关键词
RECOGNITION; HISTOGRAMS; SHAPES;
D O I
10.1016/j.imavis.2020.103898
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Object pose recovery has gained increasing attention in the computer vision field as it has become an important problem in rapidly evolving technological areas related to autonomous driving, robotics, and augmented reality. Existing review-related studies have addressed the problem at visual level in 2D, going through the methods which produce 2D bounding boxes of objects of interest in RGB images. The 2D search space is enlarged either using the geometry information available in the 3D space along with RGB (Mono/Stereo) images, or utilizing depth data from LIDAR sensors and/or RGB-D cameras. 3D bounding box detectors, producing category-level amodal 3D bounding boxes, are evaluated on gravity aligned images, while full 6D object pose estimators are mostly tested at instance-level on the images where the alignment constraint is removed. Recently, 6D object pose estimation is tackled at the level of categories. In this paper, we present the first comprehensive and most recent review of the methods on object pose recovery, from 3D bounding box detectors to full 6D pose estimators. The methods mathematically model the problem as a classification, regression, classification & regression, template matching, and point-pair feature matching task. Based on this, a mathematical-model-based categorization of the methods is established. Datasets used for evaluating the methods are investigated with respect to the challenges, and evaluation metrics are studied. Quantitative results of experiments in the literature are analyzed to show which category of methods best performs across what types of challenges. The analyses are further extended comparing two methods, which are our own implementations, so that the outcomes from the public results are further solidified. Current position of the field is summarized regarding object pose recovery, and possible research directions are identified. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:23
相关论文
共 50 条
  • [31] Focal segmentation for robust 6D object pose estimation
    Ye, Yuning
    Park, Hanhoon
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (16) : 47563 - 47585
  • [32] 6D Object Pose Estimation for Robot Programming by Demonstration
    Ghahramani, Mohammad
    Vakanski, Aleksandar
    Janabi-Sharifi, Farrokh
    PROGRESS IN OPTOMECHATRONIC TECHNOLOGIES, 2019, 233 : 93 - 101
  • [33] Generalizable and Accurate 6D Object Pose Estimation Network
    Fu, Shouxu
    Li, Xiaoning
    Yu, Xiangdong
    Cao, Lu
    Li, Xingxing
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT III, 2024, 14427 : 312 - 324
  • [34] Fast 6D object pose refinement in depth images
    Zhang, Haoruo
    Cao, Qixin
    APPLIED INTELLIGENCE, 2019, 49 (06) : 2287 - 2300
  • [35] Segmentation-driven 6D Object Pose Estimation
    Hu, Yinlin
    Hugonot, Joachim
    Fua, Pascal
    Salzmann, Mathieu
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 3380 - 3389
  • [36] RobotP: A Benchmark Dataset for 6D Object Pose Estimation
    Yuan, Honglin
    Hoogenkamp, Tim
    Veltkamp, Remco C.
    SENSORS, 2021, 21 (04) : 1 - 26
  • [37] 6D Object Pose Estimation Based on the Attention Mechanism
    Zhou, Guanyu
    INTERNATIONAL CONFERENCE ON ALGORITHMS, HIGH PERFORMANCE COMPUTING, AND ARTIFICIAL INTELLIGENCE (AHPCAI 2021), 2021, 12156
  • [38] Fundamental Coordinate Space for Object 6D Pose Estimation
    Wan, Boyan
    Zhang, Chen
    IEEE ACCESS, 2024, 12 : 146430 - 146440
  • [39] Graph neural network for 6D object pose estimation
    Yin, Pengshuai
    Ye, Jiayong
    Lin, Guoshen
    Wu, Qingyao
    KNOWLEDGE-BASED SYSTEMS, 2021, 218
  • [40] Fast 6D object pose refinement in depth images
    Haoruo Zhang
    Qixin Cao
    Applied Intelligence, 2019, 49 : 2287 - 2300