Sharp phase transition for random loop models on trees

被引:0
|
作者
Betz, Volker [1 ]
Ehlert, Johannes [1 ]
Lees, Benjamin [2 ]
Roth, Lukas [1 ]
机构
[1] Tech Univ Darmstadt, Darmstadt, Germany
[2] Univ Bristol, Bristol, Avon, England
来源
关键词
random loop model; random interchange; random stirring; phase transition; INFINITE CYCLES;
D O I
10.1214/21-EJP677
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We investigate the random loop model on the d-ary tree. For d >= 3, we establish a (locally) sharp phase transition for the existence of infinite loops. Moreover, we derive rigorous bounds that in principle allow to determine the value of the critical parameter with arbitrary precision. Additionally, we prove the existence of an asymptotic expansion for the critical parameter in terms of d-1. The corresponding coefficients can be determined in a schematic way and we calculate them up to order 6.
引用
收藏
页数:26
相关论文
共 50 条
  • [21] Sharp phase transition and critical behaviour in 2D divide and colour models
    Balint, Andras
    Camia, Federico
    Meester, Ronald
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2009, 119 (03) : 937 - 965
  • [22] THE PHASE-TRANSITION IN A GENERAL-CLASS OF ISING-TYPE MODELS IS SHARP
    AIZENMAN, M
    BARSKY, DJ
    FERNANDEZ, R
    JOURNAL OF STATISTICAL PHYSICS, 1987, 47 (3-4) : 343 - 374
  • [23] SHARP METAL-INSULATOR-TRANSITION IN A RANDOM SOLID
    ROSENBAUM, TF
    ANDRES, K
    THOMAS, GA
    BHATT, RN
    PHYSICAL REVIEW LETTERS, 1980, 45 (21) : 1723 - 1726
  • [24] PHASE TRANSITION FOR THE ONCE-REINFORCED RANDOM WALK ON Zd-LIKE TREES
    Kious, Daniel
    Sidoravicius, Vladas
    ANNALS OF PROBABILITY, 2018, 46 (04): : 2121 - 2133
  • [25] Sharp threshold for embedding balanced spanning trees in random geometric graphs
    Diaz, Alberto Espuny
    Lichev, Lyuben
    Mitsche, Dieter
    Wesolek, Alexandra
    JOURNAL OF GRAPH THEORY, 2024, 107 (01) : 107 - 125
  • [26] PERCOLATION PHASE TRANSITION IN WEIGHT-DEPENDENT RANDOM CONNECTION MODELS
    Gracar, Peter
    Luechtrath, Lukas
    Moerters, Peter
    ADVANCES IN APPLIED PROBABILITY, 2021, 53 (04) : 1090 - 1114
  • [27] CARDINALITY OF PHASE-TRANSITION OF ISING-MODELS ON CLOSED CAYLEY TREES
    BERGER, T
    YE, ZX
    PHYSICA A, 1990, 166 (03): : 549 - 574
  • [28] The existence phase transition for scale invariant Poisson random fractal models
    Broman, Erik, I
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2020, 56 (01): : 715 - 733
  • [29] Spectral Transition for Random Quantum Walks on Trees
    Hamza, Eman
    Joye, Alain
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 326 (02) : 415 - 439
  • [30] Spectral Transition for Random Quantum Walks on Trees
    Eman Hamza
    Alain Joye
    Communications in Mathematical Physics, 2014, 326 : 415 - 439