Simulation of the backward current in polycrystalline silicon thin-film transistors

被引:1
|
作者
Baudet, M [1 ]
Lhermite, H [1 ]
Mohammed-Brahim, T [1 ]
机构
[1] Univ Rennes 1, Grp Microelect & Visualisat, UPRESA 6076, CNRS, FR-35042 Rennes, France
关键词
modelling; polysilicon; TFT;
D O I
10.4028/www.scientific.net/SSP.80-81.379
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Many of previous electrical simulations of the channel current under reverse bias conditions in a polycrystalline silicon thin film transistors assume an homogeneous material with an uniformly distributed defect density. Nevertheless, polycrystalline silicon, particularly laser crystallised silicon, is an inhomogeneous material with large crystallised regions, the grains, and disordered thin interfaces, the grain boundaries. Within the device simulator Atlas, we introduced this more realistic model of polycrystalline material, with monocrystalline grains of size L, separated by amorphous grain boundaries of size e, to reproduce the reverse current behaviour of polysilicon thin film transistors. The experimental reverse current generally shows an exponential increase versus the reverse bias. With the introduction of a generation model with carriers band to band tunnelling, the exponential behaviour of the backward channel current with respect to the reverse bias voltage can be accounted for.
引用
下载
收藏
页码:379 / 384
页数:6
相关论文
共 50 条
  • [21] On the conduction mechanism in polycrystalline silicon thin-film transistors
    Walker, AJ
    Herner, SB
    Kumar, T
    Chen, EH
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2004, 51 (11) : 1856 - 1866
  • [22] POLYCRYSTALLINE SILICON-GERMANIUM THIN-FILM TRANSISTORS
    KING, TJ
    SARASWAT, KC
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 1994, 41 (09) : 1581 - 1591
  • [23] Noise sources in polycrystalline silicon thin-film transistors
    Han, IK
    Park, YJ
    Cho, WJ
    Choi, WJ
    Lee, JG
    Chovet, A
    Brini, J
    PROGRESS IN SEMICONDUCTORS II- ELECTRONIC AND OPTOELECTRONIC APPLICATIONS, 2003, 744 : 481 - 486
  • [24] Tunneling current in polycrystalline organic thin-film transistors
    Horowitz, G
    ADVANCED FUNCTIONAL MATERIALS, 2003, 13 (01) : 53 - 60
  • [25] Modeling and simulation of polycrystalline ZnO thin-film transistors
    Hossain, F.M. (fhossain@imr.tohoku.ac.jp), 1600, American Institute of Physics Inc. (94):
  • [26] Modeling and simulation of polycrystalline ZnO thin-film transistors
    Hossain, FM
    Nishii, J
    Takagi, S
    Ohtomo, A
    Fukumura, T
    Fujioka, H
    Ohno, H
    Koinuma, H
    Kawasaki, M
    JOURNAL OF APPLIED PHYSICS, 2003, 94 (12) : 7768 - 7777
  • [27] Determination of excess current due to impact ionization in polycrystalline silicon thin-film transistors
    IESS-CNR, Roma, Italy
    Solid State Electron, 4 (613-618):
  • [28] On-current modeling of large-grain polycrystalline silicon thin-film transistors
    Farmakis, FV
    Brini, J
    Kamarinos, G
    Angelis, CT
    Dimitriadis, CA
    Miyasaka, M
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2001, 48 (04) : 701 - 706
  • [29] Current density enhancement at active layer edges in polycrystalline silicon thin-film transistors
    Kimura, M
    Nozawa, R
    Inoue, S
    Shimoda, T
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS, 2001, 40 (1AB): : L26 - L28
  • [30] Origin of hysteresis in current-voltage characteristics of polycrystalline silicon thin-film transistors
    Lin, Horng-Chih
    Hung, Cheng-Hsiung
    Chen, Wei-Chen
    Lin, Zer-Ming
    Hsu, Hsing-Hui
    Hunag, Tiao-Yuang
    Journal of Applied Physics, 2009, 105 (05):