Multivariate Bernstein Frechet copulas

被引:0
|
作者
Xie, Zongkai [1 ]
Wang, Fang [2 ]
Yang, Jingping [3 ]
Guo, Nan [4 ]
机构
[1] Peking Univ, Dept Financial Math, Beijing 100871, Peoples R China
[2] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
[3] Peking Univ, LMEQF, Dept Financial Math, Beijing 100871, Peoples R China
[4] China Bond Rating Co, Beijing 100032, Peoples R China
基金
中国国家自然科学基金;
关键词
Copula construction; Multivariate Bernstein Frechet copulas; Bivariate marginal copulas; Parametric estimation; DISTRIBUTIONS;
D O I
暂无
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Finding joint copulas based on given bivariate margins is an interesting problem. It involves in obtaining the copula from the information of its bivariate marginal distributions. In this paper, we present a multivariate copula family called multivariate Bernstein Frechet (BF) copulas. Each copula in the family is uniquely determined by its bivariate margins, the bivariate BF copulas. For this purpose, we first discuss properties of the bivariate BF copulas, including super-migrativity and TP2 properties. The advantages of bivariate BF copula are identified by comparing it with the bivariate Gaussian copula and the bivariate Frechet copula. We show that a multivariate BF copula is uniquely determined by its marginal bivariate BF copulas, and methods to construct the multivariate BF copula are discussed. Numerical studies are carried out for displaying the advantages of multivariate BF copulas.
引用
收藏
页码:527 / 547
页数:21
相关论文
共 50 条
  • [21] Multivariate copulas with hairpin support
    Durante, Fabrizio
    Fernandez Sanchez, Juan
    Trutschnig, Wolfgang
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2014, 130 : 323 - 334
  • [22] Multivariate Hierarchical Copulas with Shocks
    Durante, Fabrizio
    Hofert, Marius
    Scherer, Matthias
    [J]. METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2010, 12 (04) : 681 - 694
  • [23] A method for constructing multivariate copulas
    Durante, F.
    Quesada-Molina, J. J.
    Ubeda-Flores, M.
    [J]. NEW DIMENSIONS IN FUZZY LOGIC AND RELATED TECHNOLOGIES, VOL I, PROCEEDINGS, 2007, : 191 - +
  • [24] Tails of multivariate Archimedean copulas
    Charpentier, Arthur
    Segers, Johan
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2009, 100 (07) : 1521 - 1537
  • [25] Multivariate Markov Families of Copulas
    Overbeck, Ludger
    Schmidt, Wolfgang M.
    [J]. DEPENDENCE MODELING, 2015, 3 (01): : 159 - 171
  • [26] Multivariate shuffles and approximation of copulas
    Durante, Fabrizio
    Fernandez-Sanchez, Juan
    [J]. STATISTICS & PROBABILITY LETTERS, 2010, 80 (23-24) : 1827 - 1834
  • [27] On Multivariate Bernstein Polynomials
    Foupouagnigni, Mama
    Mouafo Wouodjie, Merlin
    [J]. MATHEMATICS, 2020, 8 (09)
  • [28] Testing symmetry for bivariate copulas using Bernstein polynomials
    Guanjie Lyu
    Mohamed Belalia
    [J]. Statistics and Computing, 2023, 33
  • [29] Forecasting time series with multivariate copulas
    Simard, Clarence
    Remillard, Bruno
    [J]. DEPENDENCE MODELING, 2015, 3 (01): : 59 - 82
  • [30] Tails of multivariate Archimedean copulas.
    Charpentier, Arthur
    Segers, Johan
    [J]. INSURANCE MATHEMATICS & ECONOMICS, 2006, 39 (03): : 412 - 412