From 3D view to 3D print

被引:0
|
作者
Dima, M. [1 ]
Farisato, G. [1 ]
Bergomi, M. [1 ]
Viotto, V. [1 ]
Magrin, D. [1 ]
Greggio, D. [1 ,2 ]
Farinato, J. [1 ]
Marafatto, L. [1 ,2 ]
Ragazzoni, R. [1 ]
Piazza, D. [3 ]
机构
[1] INAF Osservatorio Astron Padova, I-35122 Padua, Italy
[2] Univ Padua, Dept Phys & Astron, I-35122 Padua, Italy
[3] Univ Bern, Inst Phys, Bern, Switzerland
关键词
D O I
10.1117/12.2056502
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In the last few years 3D printing is getting more and more popular and used in many fields going from manufacturing to industrial design, architecture, medical support and aerospace. 3D printing is an evolution of bi-dimensional printing, which allows to obtain a solid object from a 3D model, realized with a 3D modelling software. The final product is obtained using an additive process, in which successive layers of material are laid down one over the other. A 3D printer allows to realize, in a simple way, very complex shapes, which would be quite difficult to be produced with dedicated conventional facilities. Thanks to the fact that the 3D printing is obtained superposing one layer to the others, it doesn't need any particular work flow and it is sufficient to simply draw the model and send it to print. Many different kinds of 3D printers exist based on the technology and material used for layer deposition. A common material used by the toner is ABS plastics, which is a light and rigid thermoplastic polymer, whose peculiar mechanical properties make it diffusely used in several fields, like pipes production and cars interiors manufacturing. I used this technology to create a 1: 1 scale model of the telescope which is the hardware core of the space small mission CHEOPS (CHaracterising ExOPlanets Satellite) by ESA, which aims to characterize EXOplanets via transits observations. The telescope has a Ritchey-Chretien configuration with a 30cm aperture and the launch is foreseen in 2017. In this paper, I present the different phases for the realization of such a model, focusing onto pros and cons of this kind of technology. For example, because of the finite printable volume (10x10x12 inches in the x, y and z directions respectively), it has been necessary to split the largest parts of the instrument in smaller components to be then reassembled and post-processed. A further issue is the resolution of the printed material, which is expressed in terms of layers thickness, in the Z direction, and in drop-per-inch, in X and Y directions. 3D printing is also an easy and quick production technique, which can become useful in the ad-hoc realization of mechanical components for optical setups to be used in a laboratory for new concept studies and validation, reducing the manufacturing time. With this technique, indeed, it is possible to realize in few hours custom-made mechanical parts, without any specific knowledge and expertise in tool machinery, as long as the resolution and size are compliant with the requirements.
引用
下载
收藏
页数:10
相关论文
共 50 条
  • [41] A 3D view of sodium channels
    William A. Catterall
    Nature, 2001, 409 : 988 - 991
  • [42] A 3D view of early mammals
    Hoffmann, Simone
    Krause, David W.
    NATURE, 2018, 558 (7708) : 32 - 33
  • [43] Multiscale 3D view of the genome
    Nicole Rusk
    Nature Methods, 2017, 14 : 1126 - 1127
  • [44] 3D effect generation from monocular view
    Curti, S
    Sirtori, D
    Vella, F
    FIRST INTERNATIONAL SYMPOSIUM ON 3D DATA PROCESSING VISUALIZATION AND TRANSMISSION, 2002, : 550 - 553
  • [45] View various 3D models
    Anon
    Computer-Aided Engineering, 2001, 20 (05):
  • [46] A 3D Content Cloud: Sharing, Trading and Customizing 3D Print-ready Objects
    Ng, Kong-Chor
    Pang, Wai-Man
    2016 IEEE SECOND INTERNATIONAL CONFERENCE ON MULTIMEDIA BIG DATA (BIGMM), 2016, : 174 - 177
  • [47] A 3D view on 2D materials
    Novoselov, Kostya
    Demming, Anna
    PHYSICS WORLD, 2019, 32 (05) : 15 - 15
  • [48] Determinants of 3D Principal Strain, 3D Circumferential, 3D Longitudinal, and 3D Radial Strains
    Gopal, Aasha S.
    Toole, Rena S.
    Reichek, Nathaniel
    Cao, Jie J.
    CIRCULATION, 2011, 124 (21)
  • [49] ANIMATION FOCUS - TO 3D OR NOT TO 3D
    HARBISON, D
    COMPUTER GRAPHICS WORLD, 1987, 10 (07) : 55 - 56
  • [50] 3D epigenomics and 3D epigenopathies
    Lee, Kyung-Hwan
    Kim, Jungyu
    Kim, Ji Hun
    BMB REPORTS, 2024, 57 (05) : 216 - 231