Zero Cycles on a Product of Elliptic Curves Over a p-adic Field

被引:3
|
作者
Gazaki, Evangelia [1 ]
Leal, Isabel [2 ]
机构
[1] Univ Virginia, Dept Math, Kerchof Hall,141 Cabell Dr, Charlottesville, VA 22904 USA
[2] NYU, Courant Inst Math Sci, New York, NY 10012 USA
关键词
MILNOR K-GROUPS; ABELIAN VARIETIES; RATIONAL-POINTS; THEOREM; VALUES; CHOW; MAP;
D O I
10.1093/imrn/rnab020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a product X = E-1 x ... x E-d of elliptic curves over a finite extension K of Q(p) with a combination of good or split multiplicative reduction. We assume that at most one of the elliptic curves has supersingular reduction. Under these assumptions, we prove that the Albanese kernel of X is the direct sum of a finite group and a divisible group, extending work by Raskind and Spiess to cases that include supersingular phenomena. Our method involves studying the kernel of the cycle map CH0(X)/p(n) -> H-et(2d)(X, mu(circle times d)(pn)). We give specific criteria that guarantee this map is injective for every n >= 1. When all curves have good ordinary reduction, we show that it suffices to extend to a specific finite extension L of K for these criteria to be satisfied. This extends previous work by Yamazaki and Hiranouchi.
引用
收藏
页码:10586 / 10625
页数:40
相关论文
共 50 条
  • [21] Class field theory for open curves over p-adic fields
    Toshiro Hiranouchi
    Mathematische Zeitschrift, 2010, 266 : 107 - 113
  • [22] ABELIAN GEOMETRIC FUNDAMENTAL GROUPS FOR CURVES OVER A p-ADIC FIELD
    Gazaki, Evangelia
    Hiranouchi, Toshiro
    arXiv, 2022,
  • [23] Abelian geometric fundamental groups for curves over a p-adic field
    Gazaki, Evangelia
    Hiranouchi, Toshiro
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2023, 35 (03): : 905 - 946
  • [24] Class field theory for open curves over p-adic fields
    Hiranouchi, Toshiro
    MATHEMATISCHE ZEITSCHRIFT, 2010, 266 (01) : 107 - 113
  • [25] REPRESENTATION OF ZERO BY THE FORM OVER THE P-ADIC NUMBER-FIELD
    ARKHIPOV, GI
    KARATSUBA, AA
    DOKLADY AKADEMII NAUK SSSR, 1982, 262 (01): : 11 - 13
  • [26] On elliptic units and p-adic Galois representations attached to elliptic curves
    Lozano-Robledo, A
    JOURNAL OF NUMBER THEORY, 2006, 117 (02) : 439 - 470
  • [27] On the p-adic realization of elliptic polylogarithms for CM-elliptic curves
    Bannai, K
    DUKE MATHEMATICAL JOURNAL, 2002, 113 (02) : 193 - 236
  • [28] Cohomology of tori over p-adic curves
    Claus Scheiderer
    Joost van Hamel
    Mathematische Annalen, 2003, 326 : 155 - 183
  • [29] Cyclic algebras over p-adic curves
    Saltman, David J.
    JOURNAL OF ALGEBRA, 2007, 314 (02) : 817 - 843
  • [30] Cohomology of tori over p-adic curves
    Scheiderer, C
    van Hamel, J
    MATHEMATISCHE ANNALEN, 2003, 326 (01) : 155 - 183