共 50 条
Machine Learning Applied to Omics Datasets Predicts Mortality in Patients with Alcoholic Hepatitis
被引:10
|作者:
Gao, Bei
[1
,2
]
Wu, Tsung-Chin
[3
,4
]
Lang, Sonja
[2
]
Jiang, Lu
[2
,5
]
Duan, Yi
[2
]
Fouts, Derrick E.
[6
]
Zhang, Xinlian
[4
]
Tu, Xin-Ming
[4
]
Schnabl, Bernd
[2
,5
]
机构:
[1] Nanjing Univ Informat Sci & Technol, Sch Marine Sci, Nanjing 210044, Peoples R China
[2] Univ Calif San Diego, Dept Med, La Jolla, CA 92093 USA
[3] Univ Calif San Diego, Dept Math, San Diego, CA 92093 USA
[4] Univ Calif San Diego, Herbert Wertheim Sch Publ Hlth, Div Biostat & Bioinformat, San Diego, CA 92093 USA
[5] VA San Diego Healthcare Syst, Dept Med, San Diego, CA 92161 USA
[6] J Craig Venter Inst, Rockville, MD 20850 USA
来源:
关键词:
machine learning;
mycobiome;
virome;
microbiota;
metabolomics;
SCORING SYSTEM;
D O I:
10.3390/metabo12010041
中图分类号:
Q5 [生物化学];
Q7 [分子生物学];
学科分类号:
071010 ;
081704 ;
摘要:
Alcoholic hepatitis is a major health care burden in the United States due to significant morbidity and mortality. Early identification of patients with alcoholic hepatitis at greatest risk of death is extremely important for proper treatments and interventions to be instituted. In this study, we used gradient boosting, random forest, support vector machine and logistic regression analysis of laboratory parameters, fecal bacterial microbiota, fecal mycobiota, fecal virome, serum metabolome and serum lipidome to predict mortality in patients with alcoholic hepatitis. Gradient boosting achieved the highest AUC of 0.87 for both 30-day mortality prediction using the bacteria and metabolic pathways dataset and 90-day mortality prediction using the fungi dataset, which showed better performance than the currently used model for end-stage liver disease (MELD) score.
引用
收藏
页数:16
相关论文