Phase-field, dislocation based plasticity and damage coupled model: Modelling and application to single crystal superalloys

被引:26
|
作者
Wu, Ronghai [1 ]
Zhang, Yufan [1 ]
机构
[1] Northwestern Polytech Univ, Sch Mech Civil Engn & Architecture, Xian 710072, Peoples R China
基金
中国国家自然科学基金;
关键词
Constitutive model; Plasticity; Damage; Phase-field; Creep; LOW-STRESS CREEP; NICKEL-BASED SUPERALLOYS; HIGH-TEMPERATURE CREEP; MICROSTRUCTURE; SIMULATION; VISCOPLASTICITY; EVOLUTION; BEHAVIOR; DEFORMATION; ANISOTROPY;
D O I
10.1016/j.ijplas.2022.103376
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In the present work, we propose a novel model coupling phase-field, dislocation density based plasticity and damage. The dislocation density governing equations are constructed based on evolutions of mobile and immobile dislocations. Mechanisms including dislocation multiplication, annihilation, mobile-immobile transfer due to dislocation interactions and block of interfaces are incorporated in the model. Especially, the "swallow-gap " problem surrounding the coarsened second phase, which often appears in dislocation and phase-field coupled simulations, is solved in the present model. Moreover, the phenomenon of dislocation cutting into the second phase during tertiary creep, which has rarely been considered in previous phase -field simulations of single crystal superalloys, is successfully captured in the present model with the coupling of damage. The long range stresses induced by external loading, coherent interface misfit, plastic activity and damage, as well as the short range stresses induced by antiphase boundary, dislocation line tension and forest dislocation trapping are considered in the dynamics of the model. High temperature (001) creep simulations of single crystal superalloys under 200 MPa and 350 MPa are conducted using the coupled model and compared with experiments. The results show that simulated phase microstructures, dislocations and creep properties principally agree with experiments during the whole creep stage, in terms of both microscopic and macroscopic features.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Progress of phase-field investigations of γrafting in nickel-base single-crystal superalloys
    Yan Zhao
    Hongyu Zhang
    Hua Wei
    Qi Zheng
    Tao Jin
    Xiaofeng Sun
    Science Bulletin, 2014, (15) : 1684 - 1695
  • [32] Progress of phase-field investigations of γ′ rafting in nickel-base single-crystal superalloys
    Zhao, Yan
    Zhang, Hongyu
    Wei, Hua
    Zheng, Qi
    Jin, Tao
    Sun, Xiaofeng
    CHINESE SCIENCE BULLETIN, 2014, 59 (15): : 1684 - 1695
  • [33] Modelling and simulation of dynamic recrystallisation based on multi-phase-field and dislocation-based crystal plasticity models
    Kujirai, Sho
    Shizawa, Kazuyuki
    PHILOSOPHICAL MAGAZINE, 2020, 100 (16) : 2106 - 2127
  • [34] Studying Grain Boundary Strengthening by Dislocation-Based Strain Gradient Crystal Plasticity Coupled with a Multi-Phase-Field Model
    Amin, Waseem
    Ali, Muhammad Adil
    Vajragupta, Napat
    Hartmaier, Alexander
    MATERIALS, 2019, 12 (18)
  • [35] Phase-field crystal model with a vapor phase
    Schwalbach, Edwin J.
    Warren, James A.
    Wu, Kuo-An
    Voorhees, Peter W.
    PHYSICAL REVIEW E, 2013, 88 (02):
  • [36] Discrete dislocation dynamics modelling of mechanical deformation of nickel-based single crystal superalloys
    Huang, Minsheng
    Zhao, Liguo
    Tong, Jie
    INTERNATIONAL JOURNAL OF PLASTICITY, 2012, 28 (01) : 141 - 158
  • [37] Phase-field model of crystal grains
    Lobkovsky, AE
    Warren, JA
    JOURNAL OF CRYSTAL GROWTH, 2001, 225 (2-4) : 282 - 288
  • [38] Phase-field crystal model for heterostructures
    Hirvonen, Petri
    Heinonen, Vili
    Dong, Haikuan
    Fan, Zheyong
    Elder, Ken R.
    Ala-Nissila, Tapio
    PHYSICAL REVIEW B, 2019, 100 (16)
  • [39] Phase-field crystal modelling of crystal nucleation, heteroepitaxy and patterning
    Granasy, Laszlo
    Tegze, Gyoergy
    Toth, Gyula I.
    Pusztai, Tamas
    PHILOSOPHICAL MAGAZINE, 2011, 91 (01) : 123 - 149
  • [40] Displacive phase-field crystal model
    Alster, Eli
    Elder, K. R.
    Voorhees, Peter W.
    PHYSICAL REVIEW MATERIALS, 2020, 4 (01)