Phase-field, dislocation based plasticity and damage coupled model: Modelling and application to single crystal superalloys

被引:26
|
作者
Wu, Ronghai [1 ]
Zhang, Yufan [1 ]
机构
[1] Northwestern Polytech Univ, Sch Mech Civil Engn & Architecture, Xian 710072, Peoples R China
基金
中国国家自然科学基金;
关键词
Constitutive model; Plasticity; Damage; Phase-field; Creep; LOW-STRESS CREEP; NICKEL-BASED SUPERALLOYS; HIGH-TEMPERATURE CREEP; MICROSTRUCTURE; SIMULATION; VISCOPLASTICITY; EVOLUTION; BEHAVIOR; DEFORMATION; ANISOTROPY;
D O I
10.1016/j.ijplas.2022.103376
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In the present work, we propose a novel model coupling phase-field, dislocation density based plasticity and damage. The dislocation density governing equations are constructed based on evolutions of mobile and immobile dislocations. Mechanisms including dislocation multiplication, annihilation, mobile-immobile transfer due to dislocation interactions and block of interfaces are incorporated in the model. Especially, the "swallow-gap " problem surrounding the coarsened second phase, which often appears in dislocation and phase-field coupled simulations, is solved in the present model. Moreover, the phenomenon of dislocation cutting into the second phase during tertiary creep, which has rarely been considered in previous phase -field simulations of single crystal superalloys, is successfully captured in the present model with the coupling of damage. The long range stresses induced by external loading, coherent interface misfit, plastic activity and damage, as well as the short range stresses induced by antiphase boundary, dislocation line tension and forest dislocation trapping are considered in the dynamics of the model. High temperature (001) creep simulations of single crystal superalloys under 200 MPa and 350 MPa are conducted using the coupled model and compared with experiments. The results show that simulated phase microstructures, dislocations and creep properties principally agree with experiments during the whole creep stage, in terms of both microscopic and macroscopic features.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Dislocation dynamics and crystal plasticity in the phase-field crystal model
    Skaugen, Audun
    Angheluta, Luiza
    Vinals, Jorge
    PHYSICAL REVIEW B, 2018, 97 (05)
  • [2] Phase-field modelling of fracture in single crystal plasticity
    De Lorenzis L.
    McBride A.
    Reddy B.D.
    GAMM Mitteilungen, 2016, 39 (01) : 7 - 34
  • [3] A phase-field model of twinning and detwinning coupled with dislocation-based crystal plasticity for HCP metals
    Kondo, R.
    Tadano, Y.
    Shizawa, K.
    COMPUTATIONAL MATERIALS SCIENCE, 2014, 95 : 672 - 683
  • [4] A coupled ductile fracture phase-field model for crystal plasticity
    Padilla, Carlos Alberto Hernandez
    Markert, Bernd
    CONTINUUM MECHANICS AND THERMODYNAMICS, 2017, 29 (04) : 1017 - 1026
  • [5] A coupled ductile fracture phase-field model for crystal plasticity
    Carlos Alberto Hernandez Padilla
    Bernd Markert
    Continuum Mechanics and Thermodynamics, 2017, 29 : 1017 - 1026
  • [6] A coupled crystal-plasticity and phase-field model for understanding fracture behaviors of single crystal tungsten
    Li, Z. J.
    Wang, T.
    Chu, D. Y.
    Liu, Z. L.
    Cui, Y. N.
    INTERNATIONAL JOURNAL OF PLASTICITY, 2022, 157
  • [7] A creep-damage phase-field model: Predicting topological inversion in Ni-based single crystal superalloys
    Harikrishnan, Rajendran
    le Graverend, Jean-Briac
    MATERIALS & DESIGN, 2018, 160 : 405 - 416
  • [8] Intermittent Dislocation Density Fluctuations in Crystal Plasticity from a Phase-Field Crystal Model
    Tarp, Jens M.
    Angheluta, Luiza
    Mathiesen, Joachim
    Goldenfeld, Nigel
    PHYSICAL REVIEW LETTERS, 2014, 113 (26)
  • [9] Dislocation nucleation in the phase-field crystal model
    Skogvoll, Vidar
    Skaugen, Audun
    Angheluta, Luiza
    Vinals, Jorge
    PHYSICAL REVIEW B, 2021, 103 (01)
  • [10] COUPLED CRYSTAL PLASTICITY PHASE-FIELD MODEL FOR DUCTILE FRACTURE IN POLYCRYSTALLINE MICROSTRUCTURES
    Maloth, Thirupathi
    Ghosh, Somnath
    INTERNATIONAL JOURNAL FOR MULTISCALE COMPUTATIONAL ENGINEERING, 2023, 21 (02) : 1 - 19