Counting affine roots of polynomial systems via pointed Newton polytopes

被引:26
|
作者
Rojas, JM
Wang, XS
机构
[1] MIT,DEPT MATH,CAMBRIDGE,MA 02139
[2] UNIV CENT ARKANSAS,DEPT MATH & COMP SCI,CONWAY,AR 72035
关键词
D O I
10.1006/jcom.1996.0009
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We give a new upper bound on the number of isolated roots of a polynomial system. Unlike many previous bounds, our bound can also be restricted to different open subsets of affine space. Our methods give significantly sharper bounds than the classical Bezout theorems and further generalize the mixed volume root counts discovered in the late 1970s. We also give a complete combinatorial classification of the subsets of coefficients whose genericity guarantees that our bound is actually an exact root count in affine space. Our results hold over any algebraically closed field. (C) 1996 Academic Press, Inc.
引用
收藏
页码:116 / 133
页数:18
相关论文
共 50 条
  • [21] Gcd of multivariate polynomials via Newton polytopes
    Allem, Luiz Emilio
    Trevisan, Vilmar
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (21) : 8377 - 8386
  • [22] Absolute irreducibility of polynomials via newton polytopes
    Gao, SH
    JOURNAL OF ALGEBRA, 2001, 237 (02) : 501 - 520
  • [23] In-Block Controllability of Affine Systems on Polytopes
    Helwa, Mohamed K.
    Caines, Peter E.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (06) : 2950 - 2957
  • [24] On a reachability problem for affine hypersurface systems on polytopes
    Lin, Zhiyun
    Broucke, Mireille E.
    AUTOMATICA, 2011, 47 (04) : 769 - 775
  • [25] Reachability and control of affine hypersurface systems on polytopes
    Lin, Zhiyun
    Broucke, Mireille E.
    PROCEEDINGS OF THE 46TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2007, : 4884 - 4889
  • [26] In-Block Controllability of Affine Systems on Polytopes
    Helwa, Mohamed K.
    Caines, Peter E.
    2014 IEEE 53RD ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2014, : 3936 - 3942
  • [27] Irreducibility of polynomials modulo p via Newton polytopes
    Gao, SH
    Rodrigues, VM
    JOURNAL OF NUMBER THEORY, 2003, 101 (01) : 32 - 47
  • [28] The bifurcation set of a rational function via Newton polytopes
    Tat Thang Nguyen
    Takahiro Saito
    Kiyoshi Takeuchi
    Mathematische Zeitschrift, 2021, 298 : 899 - 916
  • [29] A study of accelerated Newton methods for multiple polynomial roots
    Aurél Galántai
    Csaba J. Hegedűs
    Numerical Algorithms, 2010, 54 : 219 - 243
  • [30] The Bieri–Neumann–Strebel invariants via Newton polytopes
    Dawid Kielak
    Inventiones mathematicae, 2020, 219 : 1009 - 1068