Spectroscopic ellipsometry study on the dielectric function of bulk Ti2AlN, Ti2AlC, Nb2AlC, (Ti0.5, Nb0.5)2AlC, and Ti3GeC2 MAX-phases

被引:11
|
作者
Mendoza-Galvan, A. [1 ,2 ]
Rybka, M. [2 ]
Jarrendahl, K. [2 ]
Arwin, H. [2 ]
Magnuson, M. [2 ]
Hultman, L. [2 ]
Barsoum, M. W. [3 ]
机构
[1] Cinvestav Queretaro, Queretaro 76230, Mexico
[2] Linkoping Univ, Dept Phys Chem & Biol, SE-58183 Linkoping, Sweden
[3] Drexel Univ, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA
基金
美国国家科学基金会;
关键词
MECHANICAL-PROPERTIES; THIN-FILMS;
D O I
10.1063/1.3525648
中图分类号
O59 [应用物理学];
学科分类号
摘要
The averaged complex dielectric function epsilon = (2 epsilon(perpendicular to) + epsilon(parallel to))/3 of polycrystalline Ti2AlN, Ti2AlC, Nb2AlC, (Ti-0.5, Nb-0.5)(2)AlC, and Ti3GeC2 was determined by spectroscopic ellipsometry covering the mid infrared to the ultraviolet spectral range. The dielectric functions epsilon(perpendicular to) and epsilon(parallel to) correspond to the perpendicular and parallel dielectric tensor components relative to the crystallographic c-axis of these hexagonal compounds. The optical response is represented by a dispersion model with Drude-Lorentz and critical point contributions. In the low energy range the electrical resistivity is obtained from the Drude term and ranges from 0.48 mu Omega m for Ti3GeC2 to 1.59 mu Omega m for (Ti-0.5, Nb-0.5)(2)AlC. Furthermore, several compositional dependent interband electronic transitions can be identified. For the most important ones, Im(epsilon) shows maxima at: 0.78, 1.23, 2.04, 2.48, and 3.78 eV for Ti2AlN; 0.38, 1.8, 2.6, and 3.64 eV for Ti2AlC; 0.3, 0.92, and 2.8 eV in Nb2AlC; 0.45, 0.98, and 2.58 eV in (Ti-0.5, Nb-0.5)(2)AlC; and 0.8, 1.85, 2.25, and 3.02 eV in Ti3GeC2. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3525648]
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Features of Forming the Electronic Structure at Synthesis of Ti2AlC, Ti2AlN, Ti2SiC, and Ti2SiN Compounds
    Zavodinskii, V. G.
    Gorkusha, O. A.
    PHYSICS OF THE SOLID STATE, 2019, 61 (12) : 2520 - 2524
  • [42] Molten salt synthesis and formation mechanism of Ti3AlC2: A new path from Ti2AlC to Ti3AlC2
    Zhong, Yi
    Liu, Ying
    Jin, Na
    Lin, Zifeng
    Ye, Jinwen
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2023, 106 (09) : 5567 - 5579
  • [43] Synthesis and characterization of Ti2AlC and Ti2AlN MAX phase coatings manufactured in an industrial-size coater
    Garkas, W.
    Leyens, C.
    Renteria, A. Flores
    THERMEC 2009 SUPPLEMENT: 6TH INTERNATIONAL CONFERENCE ON PROCESSING & MANUFACTURING OF ADVANCED MATERIALS, 2010, 89-91 : 208 - +
  • [44] Features of Forming the Electronic Structure at Synthesis of Ti2AlC, Ti2AlN, Ti2SiC, and Ti2SiN Compounds
    V. G. Zavodinskii
    O. A. Gorkusha
    Physics of the Solid State, 2019, 61 : 2520 - 2524
  • [45] The stability of irradiation-induced defects in Zr3AlC2, Nb4AlC3 and (Zr0.5,Ti0.5)3AlC2 MAX phase-based ceramics
    Bowden, D.
    Ward, J.
    Middleburgh, S.
    Shubeita, S. de Moraes
    Zapata-Solvas, E.
    Lapauw, T.
    Vleugels, J.
    Lambrinou, K.
    Lee, W. E.
    Preuss, M.
    Frankel, P.
    ACTA MATERIALIA, 2020, 183 : 24 - 35
  • [46] Layered Machinable and Electrically Conductive Ti2AlC and Ti3AlC2 Ceramics:a Review
    X.H.Wang and Y.C.Zhou Shenyang National Laboratory for Materials Science
    JournalofMaterialsScience&Technology, 2010, 26 (05) : 385 - 416
  • [47] Anisotropic corrosion of Ti2AlC and Ti3AlC2 in supercritical water at 500 °C
    Du, Yina
    Liu, Ji-Xuan
    Gu, Yifeng
    Wang, Xin-Gang
    Xu, Fangfang
    Zhang, Guo-Jun
    CERAMICS INTERNATIONAL, 2017, 43 (09) : 7166 - 7171
  • [48] TiH2做Ti源合成Ti2AlC/Ti3AlC2及热分析
    李良
    周爱国
    李正阳
    王李波
    硅酸盐通报, 2013, 32 (01) : 132 - 137
  • [49] Layered Machinable and Electrically Conductive Ti2AlC and Ti3AlC2 Ceramics: a Review
    Wang, X. H.
    Zhou, Y. C.
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2010, 26 (05) : 385 - 416
  • [50] 微波反应快速合成Ti3AlC2和Ti2AlC材料
    梁宝岩
    王艳芝
    张旺玺
    徐世帅
    陶瓷学报, 2015, 36 (05) : 476 - 480