Co-dimension one stable blowup for the supercritical cubic wave equation

被引:9
|
作者
Glogic, Irfan [1 ,2 ]
Schorkhuber, Birgit [3 ,4 ,5 ]
机构
[1] Ohio State Univ, Dept Math, 231 West 18th Ave, Columbus, OH 43210 USA
[2] Univ Wien, Fak Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
[3] Karlsruhe Inst Technol, Inst Anal, Englerstr 2, D-76131 Karlsruhe, Germany
[4] Goethe Univ Frankfurt, Inst Math, Robert Mayer Str 10, D-60629 Frankfurt, Germany
[5] Leopold Franzens Univ Innsbruck, Inst Math, Technikerstr 13, A-6020 Innsbruck, Austria
基金
奥地利科学基金会;
关键词
Cubic wave equation; Self-similar solution; Blowup; Stability; SELF-SIMILAR SOLUTIONS; GLOBAL DYNAMICS; MODE-STABILITY; GROUND-STATE; THRESHOLD; MAPS; SCATTERING;
D O I
10.1016/j.aim.2021.107930
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For the focusing cubic wave equation, we find an explicit, non-trivial self-similar blowup solution u(T)*, which is defined on the whole space and exists in all supercritical dimensions d >= 5. For d = 7, we analyze its stability properties without any symmetry assumptions and prove the existence of a set of perturbations which lead to blowup via u(T)* in a backward light cone. Moreover, this set corresponds to a co-dimension one Lipschitz manifold modulo translation symmetries in similarity coordinates. (c) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:79
相关论文
共 50 条