Co-dimension one stable blowup for the supercritical cubic wave equation

被引:9
|
作者
Glogic, Irfan [1 ,2 ]
Schorkhuber, Birgit [3 ,4 ,5 ]
机构
[1] Ohio State Univ, Dept Math, 231 West 18th Ave, Columbus, OH 43210 USA
[2] Univ Wien, Fak Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
[3] Karlsruhe Inst Technol, Inst Anal, Englerstr 2, D-76131 Karlsruhe, Germany
[4] Goethe Univ Frankfurt, Inst Math, Robert Mayer Str 10, D-60629 Frankfurt, Germany
[5] Leopold Franzens Univ Innsbruck, Inst Math, Technikerstr 13, A-6020 Innsbruck, Austria
基金
奥地利科学基金会;
关键词
Cubic wave equation; Self-similar solution; Blowup; Stability; SELF-SIMILAR SOLUTIONS; GLOBAL DYNAMICS; MODE-STABILITY; GROUND-STATE; THRESHOLD; MAPS; SCATTERING;
D O I
10.1016/j.aim.2021.107930
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For the focusing cubic wave equation, we find an explicit, non-trivial self-similar blowup solution u(T)*, which is defined on the whole space and exists in all supercritical dimensions d >= 5. For d = 7, we analyze its stability properties without any symmetry assumptions and prove the existence of a set of perturbations which lead to blowup via u(T)* in a backward light cone. Moreover, this set corresponds to a co-dimension one Lipschitz manifold modulo translation symmetries in similarity coordinates. (c) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:79
相关论文
共 50 条
  • [1] Co-Dimension One Stable Blowup for the Quadratic Wave Equation Beyond the Light Cone
    Chen, Po-Ning
    Donninger, Roland
    Glogic, Irfan
    McNulty, Michael
    Schoerkhuber, Birgit
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2024, 405 (02)
  • [2] Co-Dimension One Stable Blowup for the Quadratic Wave Equation Beyond the Light Cone
    Po-Ning Chen
    Roland Donninger
    Irfan Glogić
    Michael McNulty
    Birgit Schörkhuber
    Communications in Mathematical Physics, 2024, 405
  • [3] Threshold for blowup for the supercritical cubic wave equation
    Glogic, Irfan
    Maliborski, Maciej
    Schoerkhuber, Birgit
    NONLINEARITY, 2020, 33 (05) : 2143 - 2158
  • [4] Stable blowup for the cubic wave equation in higher dimensions
    Chatzikaleas, Athanasios
    Donninger, Roland
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 266 (10) : 6809 - 6865
  • [5] ON BLOWUP FOR THE SUPERCRITICAL QUADRATIC WAVE EQUATION
    Csobo, Elek
    Glogic, Irfan
    Schoerkhuber, Birgit
    ANALYSIS & PDE, 2024, 17 (02): : 617 - 680
  • [6] Construction of a Multisoliton Blowup Solution to the Semilinear Wave Equation in One Space Dimension
    Cote, Raphael
    Zaag, Hatem
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2013, 66 (10) : 1541 - 1581
  • [7] LIE ALGEBRAS WITH SUBALGEBRAS OF CO-DIMENSION ONE
    HOFMANN, KH
    ILLINOIS JOURNAL OF MATHEMATICS, 1965, 9 (04) : 636 - &
  • [8] Spinors fields in co-dimension one braneworlds
    W.M. Mendes
    G. Alencar
    R.R. Landim
    Journal of High Energy Physics, 2018
  • [9] Spinors fields in co-dimension one braneworlds
    Mendes, W. M.
    Alencar, G.
    Landim, R. R.
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (02):
  • [10] THE DEFOCUSING ENERGY-SUPERCRITICAL CUBIC NONLINEAR WAVE EQUATION IN DIMENSION FIVE
    Bulut, Aynur
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 367 (09) : 6017 - 6061