Ligand engineering of perovskite quantum dots for efficient and stable solar cells

被引:34
|
作者
Ding, Shanshan
Hao, Mengmeng
Lin, Tongen
Bai, Yang [1 ]
Wang, Lianzhou [1 ]
机构
[1] Univ Queensland, Sch Chem Engn, Brisbane, Qld 4072, Australia
来源
基金
澳大利亚研究理事会;
关键词
Perovskite quantum dots; Ligand engineering; Defect passivation; Solar cells; Stability; LIGHT-EMITTING-DIODES; HALIDE PEROVSKITES; COLLOIDAL NANOCRYSTALS; HIGHLY LUMINESCENT; ANION-EXCHANGE; ALPHA-CSPBI3; PEROVSKITE; SURFACE; PHASE; STABILITY; CSPBX3;
D O I
10.1016/j.jechem.2022.02.006
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Lead halide perovskite quantum dots (PQDs) have recently emerged as promising light absorbers for photovoltaic application due to their extraordinary optoelectronic properties. Surface ligands are of utmost importance for the colloidal stability and property tuning of PQDs, while their highly dynamic binding nature not only impedes further efficiency improvement of PQD-based solar cells but also induces intrinsic instability. Tremendous efforts have been made in ligand engineering with good hopes to solve such challenging issues in the past few years. In this review, we first present a fundamental understanding of the role of surface ligands in PQDs, followed by a brief discussion and classification of various ligands that have the potential for improving the electronic coupling and stability of PQD solids. We then provide a critical overview of recent advances in ligand engineering including the strategies of in-situ ligand engineering, post-synthesis/-deposition ligand-exchange, and interfacial engineering, and discuss their impacts on changing the efficiency and stability of perovskite QD solar cells (QDSCs). Finally, we give our perspectives on the future directions of ligand engineering towards more efficient and stable perovskite QDSCs. (C) 2022 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:626 / 648
页数:23
相关论文
共 50 条
  • [21] Interface Engineering for Highly Efficient and Stable Perovskite Solar Cells
    Zhao, Chenxu
    Zhang, Hong
    Krishna, Anurag
    Xu, Jia
    Yao, Jianxi
    ADVANCED OPTICAL MATERIALS, 2024, 12 (07)
  • [22] Perovskite Nanocomposite Layers Engineering for Efficient and Stable Solar Cells
    Bkkar, Muhammad Ahmad
    Olekhnovich, Roman Olegovich
    Uspenskaya, Mayya Valerievna
    JOURNAL OF NANO RESEARCH, 2022, 71 : 71 - 109
  • [23] Nano-capillary induced assemble of quantum dots on perovskite grain boundaries for efficient and stable perovskite solar cells
    Miaoyu Lin
    Jingjing He
    Xinyi Liu
    Qing Li
    Zhanpeng Wei
    Yuting Sun
    Xuesong Leng
    Mengjiong Chen
    Zhuhui Xia
    Yu Peng
    Qiang Niu
    Shuang Yang
    Yu Hou
    Journal of Energy Chemistry, 2023, 83 (08) : 595 - 601
  • [24] Nano-capillary induced assemble of quantum dots on perovskite grain boundaries for efficient and stable perovskite solar cells
    Lin, Miaoyu
    He, Jingjing
    Liu, Xinyi
    Li, Qing
    Wei, Zhanpeng
    Sun, Yuting
    Leng, Xuesong
    Chen, Mengjiong
    Xia, Zhuhui
    Peng, Yu
    Niu, Qiang
    Yang, Shuang
    Hou, Yu
    JOURNAL OF ENERGY CHEMISTRY, 2023, 83 (595-601): : 595 - 601
  • [25] Electric field enhanced with CdS/ZnS quantum dots passivation for efficient and stable perovskite solar cells
    Li, Cong
    Li, Huan
    Zhu, Zhinan
    Yin, Tong
    Wang, Zhenni
    Li, Peipei
    Zeng, Chengxin
    Yang, Fu
    Zhong, Peng
    Cui, Nuanyang
    Shou, Chunhui
    JOURNAL OF POWER SOURCES, 2022, 537
  • [26] Efficient and stable tandem luminescent solar concentrators based on carbon dots and perovskite quantum dots
    Zhao, Haiguang
    Benetti, Daniele
    Tong, Xin
    Zhang, Hui
    Zhou, Yufeng
    Liu, Guiju
    Ma, Dongling
    Sun, Shuhui
    Wang, Zhiming M.
    Wang, Yiqian
    Rosei, Federico
    NANO ENERGY, 2018, 50 : 756 - 765
  • [27] Perovskite Quantum Dots in Solar Cells
    Liu, Lu
    Najar, Adel
    Wang, Kai
    Du, Minyong
    Liu, Shengzhong
    ADVANCED SCIENCE, 2022, 9 (07)
  • [28] Multidentate passivation crosslinking perovskite quantum dots for efficient solar cells
    Chen, Jingxuan
    Jia, Donglin
    Qiu, Junming
    Zhuang, Rongshan
    Hua, Yong
    Zhang, Xiaoliang
    NANO ENERGY, 2022, 96
  • [29] Surface matrix regulation of perovskite quantum dots for efficient solar cells
    Xiao, Shuhuai
    Mei, Xinyi
    Zhang, Xiaoliang
    ENERGY & ENVIRONMENTAL SCIENCE, 2024, 17 (16) : 5756 - 5794
  • [30] Passivation mechanism of the perovskite upper interface based on MAPbBr3 quantum dots for efficient and stable perovskite solar cells
    Feng, Yan
    Li, Huilin
    Shen, Zhitao
    Li, Fumin
    Jin, Mengqi
    Rong, Yanjing
    Tian, Xingyuan
    Liu, Rong
    Chen, Chong
    SUSTAINABLE ENERGY & FUELS, 2023, 7 (20) : 5057 - 5065