Spectral Properties of the Normalized Rigidity Matrix for Triangular Formations

被引:3
|
作者
Aryankia, Kiarash [1 ]
Selmic, Rastko R. [1 ]
机构
[1] Concordia Univ, Dept Elect & Comp Engn, Montreal, PQ H3G 1M8, Canada
来源
基金
加拿大自然科学与工程研究理事会;
关键词
Rigidity; Three-dimensional displays; Manganese; Symmetric matrices; Upper bound; Aerospace electronics; 3G mobile communication; Agents-based system; formation control; rigid graph; spectral graph theory; SYSTEMS;
D O I
10.1109/LCSYS.2021.3089136
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This work establishes properties of the normalized rigidity matrix in two- and three-dimensional spaces. The upper bound of the normalized rigidity matrix singular values is derived for minimally and infinitesimally rigid frameworks in two- and three-dimensional spaces. We prove that the transformation of a framework does not affect the normalized rigidity matrix properties. The largest minimum singular value of the normalized rigidity matrix for a rigid framework of three agents in two-dimensional space is given as well as necessary and sufficient conditions to reach that value. These results can be used in stability analysis and control design of a distance-based formation control. The numerical simulation for multi-agent systems in two-dimensional space illustrates the theoretical results. Moreover, a real-time simulation is provided to demonstrate the spectral properties of the normalized rigidity matrix.
引用
收藏
页码:1154 / 1159
页数:6
相关论文
共 50 条
  • [1] Rigidity of a simple extended lower triangular matrix
    Mahajan, Meena
    Jayalal, Sarma M. N.
    [J]. INFORMATION PROCESSING LETTERS, 2008, 107 (05) : 149 - 153
  • [2] Automatic Generation of Minimally Persistent Formations Using Rigidity Matrix
    Luo Xiaoyuan
    Li Shaobao
    Guan Xinping
    [J]. 2009 IEEE INTELLIGENT VEHICLES SYMPOSIUM, VOLS 1 AND 2, 2009, : 1198 - 1203
  • [3] SPECTRAL PROPERTIES OF RANDOM TRIANGULAR MATRICES
    Basu, Riddhipratim
    Bose, Arup
    Ganguly, Shirshendu
    Hazra, Rajat Subhra
    [J]. RANDOM MATRICES-THEORY AND APPLICATIONS, 2012, 1 (03)
  • [4] Spectral properties of left triangular matrices
    Blank, ML
    [J]. RUSSIAN MATHEMATICAL SURVEYS, 2001, 56 (01) : 149 - 151
  • [5] SPECTRAL SINGULARITIES OF DIFFERENTIAL OPERATOR WITH TRIANGULAR MATRIX COEFFICIENTS
    Kholkin, A. M.
    [J]. METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2013, 19 (03): : 260 - 267
  • [6] A RIGIDITY RESULT FOR NORMALIZED SUBFACTORS
    Alekseev, Vadim
    Brugger, Rahel
    [J]. JOURNAL OF OPERATOR THEORY, 2021, 86 (01) : 3 - 15
  • [7] Spectral rigidity of vehicular streams (random matrix theory approach)
    Krbalek, Milan
    Seba, Petr
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (34)
  • [8] Van Cittert-Zernike theorem and symmetry properties of the normalized cross-spectral density matrix
    Refregier, Philippe
    Roueff, Antoine
    Wasik, Valentine
    [J]. OPTICS LETTERS, 2014, 39 (21) : 6150 - 6153
  • [9] Spectral properties of upper triangular block operators
    Benhida, C.
    Zerouali, E. H.
    Zguitti, H.
    [J]. ACTA SCIENTIARUM MATHEMATICARUM, 2005, 71 (3-4): : 681 - 690
  • [10] Triangular Networks for Resilient Formations
    Saldana, David
    Prorok, Amanda
    Campos, Mario F. M.
    Kumar, Vijay
    [J]. DISTRIBUTED AUTONOMOUS ROBOTIC SYSTEMS, 2019, 6 : 147 - 159