Spectral rigidity of vehicular streams (random matrix theory approach)

被引:18
|
作者
Krbalek, Milan [1 ]
Seba, Petr [1 ,2 ,3 ]
机构
[1] Czech Tech Univ, Fac Nucl Sci & Phys Engn, Doppler Inst Math Phys & Appl Math, CR-11519 Prague, Czech Republic
[2] Univ Hradec Kralove, Hradec Kralove, Czech Republic
[3] Acad Sci Czech Republ, Inst Phys, Prague, Czech Republic
关键词
D O I
10.1088/1751-8113/42/34/345001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using a method originally developed for the random matrix theory, we derive an approximate mathematical formula for the number variance Delta(N)(L) describing the rigidity of particle ensembles with a power-law repulsion. The resulting relation is compared with the relevant statistics of the single-vehicle data measured on the Dutch freeway A9. The detected value of the inverse temperature beta, which can be identified as a coefficient of the mental strain of the car drivers, is then discussed in detail with the relation to the traffic density rho and flow J.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Statistical rigidity of vehicular streams-theory versus reality
    Kollert, Ondrej
    Krbalek, Milan
    Hobza, Tomas
    Krbalkova, Michaela
    [J]. JOURNAL OF PHYSICS COMMUNICATIONS, 2019, 3 (03):
  • [2] Random Matrix Theory of Rigidity in Soft Matter
    Yamanaka, Masanori
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2015, 84 (06)
  • [3] Spectral density of the correlation matrix of factor models: A random matrix theory approach
    Lillo, F
    Mantegna, RN
    [J]. PHYSICAL REVIEW E, 2005, 72 (01):
  • [4] Inner structure of vehicular ensembles and random matrix theory
    Krbalek, Milan
    Hobza, Tomas
    [J]. PHYSICS LETTERS A, 2016, 380 (21) : 1839 - 1847
  • [5] Spectral form factor in a random matrix theory
    Brezin, E
    Hikami, S
    [J]. PHYSICAL REVIEW E, 1997, 55 (04): : 4067 - 4083
  • [6] Dynamical approach to random matrix theory
    Tao, Terence
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 57 (01): : 161 - 169
  • [7] REPLICA VARIABLES, LOOP EXPANSION, AND SPECTRAL RIGIDITY OF RANDOM-MATRIX ENSEMBLES
    VERBAARSCHOT, JJM
    ZIRNBAUER, MR
    [J]. ANNALS OF PHYSICS, 1984, 158 (01) : 78 - 119
  • [8] First Colonization of a Spectral Outpost in Random Matrix Theory
    M. Bertola
    S. Y. Lee
    [J]. Constructive Approximation, 2009, 30 : 225 - 263
  • [9] SPECTRAL STATISTICS BEYOND RANDOM-MATRIX THEORY
    ANDREEV, AV
    ALTSHULER, BL
    [J]. PHYSICAL REVIEW LETTERS, 1995, 75 (05) : 902 - 905
  • [10] Generalized spectral form factor in random matrix theory
    Wei, Zhiyang
    Tan, Chengming
    Zhang, Ren
    [J]. PHYSICAL REVIEW E, 2024, 109 (06)