Impact of the electrolyte salt anion on the solid electrolyte interphase formation in sodium ion batteries

被引:273
|
作者
Eshetu, Gebrekidan Gebresilassie [1 ,2 ,3 ,4 ,5 ]
Diemant, Thomas [6 ]
Hekmatfar, Maral [1 ,2 ]
Grugeon, Sylvie [7 ]
Behm, R. Juergen [1 ,6 ]
Laruelle, Stephane [7 ]
Armand, Michel [3 ]
Passerini, Stefano [1 ,2 ]
机构
[1] Helmholtz Inst Ulm HIU Electrochem Energy Storage, Helmholtzstr 11, D-89081 Ulm, Germany
[2] Karlsruhe Inst Technol, POB 3640, D-76021 Karlsruhe, Germany
[3] CIC Energigune, Elect Energy Storage Dept, Parque Tecnol Alava,Albert Einstein 48, E-01510 Minano, Alava, Spain
[4] Mekelle Univ, Coll Nat & Computat Sci, Dept Chem, POB 231, Mekelle, Ethiopia
[5] Rhein Westfal TH Aachen, Inst Power Elect & Elect Drives ISEA, Jagerstr 17-19, D-52066 Aachen, Germany
[6] Ulm Univ, Inst Surface Chem & Catalysis, Albert Einstein Allee 47, D-89081 Ulm, Germany
[7] CNRS, UMR7314, LRCS, Reseau Stockage Electrochim Energie, RS2E FR-3459, Amiens, France
关键词
Sodium-ion battery; NIB; Electrolyte; Salt anions; Solid electrolyte interphase; SEI; RAY PHOTOELECTRON-SPECTROSCOPY; HIGH-PERFORMANCE; ENERGY-STORAGE; SURFACE-CHEMISTRY; LOW-COST; LITHIUM; CARBON; LI; METAL; MECHANISMS;
D O I
10.1016/j.nanoen.2018.10.040
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Aiming at a more comprehensive understanding of the solid electrolyte interphase (SEI) in sodium ion batteries (NIBs), a detailed X-ray photoelectron spectroscopy (XPS) investigation of the few-nanometer thick passivation film formed on hard carbon (HC) in contact with various Na+-ion conducting electrolytes is reported. The electrolytes investigated include 1 M solutions of NaPF6, NaClO4, NaTFSI, NaFSI, and NaFTFSI, all dissolved in a common mixture of ethylene carbonate (EC) and diethylene carbonate (DEC) (EC/DEC = 1/1 wt. ratio). For comparison, the study of analogous Li-based electrolytes containing LiPF6 and LiFSI as representative electrolyte salts is also reported. The anion and cation of the electrolyte salt appear to play a key role in determining the overall SEI layer composition, including its depth evolution and thickness. The SEI building species formed on hard carbon by solvent reduction upon sodiation are found to decrease with the various salts in the order: NaPF6 > NaClO4 approximate to NaTFSI > NaFTFSI > NaFSI. The comparison of lithiated and sodiated HC electrodes shows that the SEI layer is more homogeneous and richer in organic species upon the use of Na-based electrolytes. Surface and depth-profiling XPS analysis on HC electrodes charged in the various electrolyte formulations provides in-depth insights on the differences and similarities of the SEI (composition, thickness, depth evolution, etc.) evolving from the variation in the chemical structure of the cations and anions of the respective salts.
引用
收藏
页码:327 / 340
页数:14
相关论文
共 50 条
  • [41] Anion-derived solid electrolyte interphase realized in usual-concentration electrolyte for Li metal batteries
    Hao, Zhimeng
    Li, Geng
    Lu, Yong
    Cai, Yichao
    Yang, Gaojing
    Chen, Jun
    NANO RESEARCH, 2023, 16 (11) : 12647 - 12654
  • [42] Anion-derived solid electrolyte interphase realized in usual-concentration electrolyte for Li metal batteries
    Zhimeng Hao
    Geng Li
    Yong Lu
    Yichao Cai
    Gaojing Yang
    Jun Chen
    Nano Research, 2023, 16 : 12647 - 12654
  • [43] On Electrolyte-Dependent Formation of Solid Electrolyte Interphase Film in Lithium-Ion Batteries: Strong Sensitivity to Small Structural Difference of Electrolyte Molecules
    Takenaka, Norio
    Suzuki, Yuichi
    Sakai, Hirofumi
    Nagaoka, Masataka
    JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (20): : 10874 - 10882
  • [44] Solid Electrolyte Interphase Formation on Anatase TiO2 Nanoparticle-Based Electrodes for Sodium-Ion Batteries
    Siebert, Andreas
    Dou, Xinwei
    Garcia-Diez, Raul
    Buchholz, Daniel
    Felix, Roberto
    Handick, Evelyn
    Wilks, Regan G.
    Passerini, Stefano
    Bar, Marcus
    ACS APPLIED ENERGY MATERIALS, 2023, 7 (01) : 125 - 132
  • [45] A Review of Solid Electrolyte Interphase (SEI) and Dendrite Formation in Lithium Batteries
    Li, Borong
    Chao, Yu
    Li, Mengchao
    Xiao, Yuanbin
    Li, Rui
    Yang, Kang
    Cui, Xiancai
    Xu, Gui
    Li, Lingyun
    Yang, Chengkai
    Yu, Yan
    Wilkinson, David P.
    Zhang, Jiujun
    ELECTROCHEMICAL ENERGY REVIEWS, 2023, 6 (01)
  • [46] A Review of Solid Electrolyte Interphase (SEI) and Dendrite Formation in Lithium Batteries
    Borong Li
    Yu Chao
    Mengchao Li
    Yuanbin Xiao
    Rui Li
    Kang Yang
    Xiancai Cui
    Gui Xu
    Lingyun Li
    Chengkai Yang
    Yan Yu
    David P. Wilkinson
    Jiujun Zhang
    Electrochemical Energy Reviews, 2023, 6
  • [47] Formation of Stable Interphase of Polymer-in-Salt Electrolyte in All-Solid-State Lithium Batteries
    Gao, Hongcai
    Grundish, Nicholas S.
    Zhao, Yongjie
    Zhou, Aijun
    Goodenough, John B.
    ENERGY MATERIAL ADVANCES, 2021, 2021
  • [48] Solid electrolyte interphase manipulation towards highly stable hard carbon anodes for sodium ion batteries
    Bai, Panxing
    Han, Xinpeng
    He, Yongwu
    Xiong, Peixun
    Zhao, Yufei
    Sun, Jie
    Xu, Yunhua
    ENERGY STORAGE MATERIALS, 2020, 25 : 324 - 333
  • [49] Stabilization effect of solid-electrolyte interphase by electrolyte engineering for advanced Li-ion batteries
    Bintang, His Muhammad
    Seongsoo, Lee
    Shin, Sunghee
    Kim, Byung Gon
    Jung, Hun-Gi
    Whang, Dongmok
    Lim, Hee-Dae
    CHEMICAL ENGINEERING JOURNAL, 2021, 424
  • [50] Stabilization effect of solid-electrolyte interphase by electrolyte engineering for advanced Li-ion batteries
    Bintang, His Muhammad
    Lee, Seongsoo
    Shin, Sunghee
    Kim, Byung Gon
    Jung, Hun-Gi
    Whang, Dongmok
    Lim, Hee-Dae
    Chemical Engineering Journal, 2021, 424